Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040660552> ?p ?o ?g. }
- W3040660552 endingPage "5689" @default.
- W3040660552 startingPage "5682" @default.
- W3040660552 abstract "AbstractDeep learning models are widely used in the automatic analysis of radiological images. These techniques can train the weights of networks on large datasets as well as fine tuning the weights of pre-trained networks on small datasets. Due to the small COVID-19 dataset available, the pre-trained neural networks can be used for diagnosis of coronavirus. However, these techniques applied on chest CT image is very limited till now. Hence, the main aim of this paper to use the pre-trained deep learning architectures as an automated tool to detection and diagnosis of COVID-19 in chest CT. A DenseNet201 based deep transfer learning (DTL) is proposed to classify the patients as COVID infected or not i.e. COVID-19 (+) or COVID (−). The proposed model is utilized to extract features by using its own learned weights on the ImageNet dataset along with a convolutional neural structure. Extensive experiments are performed to evaluate the performance of the propose DTL model on COVID-19 chest CT scan images. Comparative analyses reveal that the proposed DTL based COVID-19 classification model outperforms the competitive approaches.Communicated by Ramaswamy H. SarmaKeywords: COVID-19classificationdeep learningdeep transfer learning Disclosure statementThe authors declare no conflict of interest regarding the publication of this paper.Ethical approvalThis research work does not involve chemicals, procedures or equipment that have any unusual hazards inherent in their use." @default.
- W3040660552 created "2020-07-10" @default.
- W3040660552 creator A5009770786 @default.
- W3040660552 creator A5013150230 @default.
- W3040660552 creator A5071634041 @default.
- W3040660552 creator A5073142640 @default.
- W3040660552 creator A5081019507 @default.
- W3040660552 date "2020-07-03" @default.
- W3040660552 modified "2023-10-09" @default.
- W3040660552 title "Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning" @default.
- W3040660552 cites W172260869 @default.
- W3040660552 cites W2101509327 @default.
- W3040660552 cites W2806866238 @default.
- W3040660552 cites W2901602009 @default.
- W3040660552 cites W2917967053 @default.
- W3040660552 cites W2921528463 @default.
- W3040660552 cites W2942810189 @default.
- W3040660552 cites W2948260310 @default.
- W3040660552 cites W2960986212 @default.
- W3040660552 cites W2963366775 @default.
- W3040660552 cites W2963446712 @default.
- W3040660552 cites W2973638934 @default.
- W3040660552 cites W2983610293 @default.
- W3040660552 cites W3001118548 @default.
- W3040660552 cites W3003217347 @default.
- W3040660552 cites W3003617865 @default.
- W3040660552 cites W3005879071 @default.
- W3040660552 cites W3006110666 @default.
- W3040660552 cites W3006583578 @default.
- W3040660552 cites W3006771233 @default.
- W3040660552 cites W3007497549 @default.
- W3040660552 cites W3008627141 @default.
- W3040660552 cites W3010313912 @default.
- W3040660552 cites W3010604545 @default.
- W3040660552 cites W3010699833 @default.
- W3040660552 cites W3011149445 @default.
- W3040660552 cites W3011414569 @default.
- W3040660552 cites W3021085078 @default.
- W3040660552 cites W3027682070 @default.
- W3040660552 cites W3027764902 @default.
- W3040660552 cites W3037538421 @default.
- W3040660552 doi "https://doi.org/10.1080/07391102.2020.1788642" @default.
- W3040660552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32619398" @default.
- W3040660552 hasPublicationYear "2020" @default.
- W3040660552 type Work @default.
- W3040660552 sameAs 3040660552 @default.
- W3040660552 citedByCount "351" @default.
- W3040660552 countsByYear W30406605522020 @default.
- W3040660552 countsByYear W30406605522021 @default.
- W3040660552 countsByYear W30406605522022 @default.
- W3040660552 countsByYear W30406605522023 @default.
- W3040660552 crossrefType "journal-article" @default.
- W3040660552 hasAuthorship W3040660552A5009770786 @default.
- W3040660552 hasAuthorship W3040660552A5013150230 @default.
- W3040660552 hasAuthorship W3040660552A5071634041 @default.
- W3040660552 hasAuthorship W3040660552A5073142640 @default.
- W3040660552 hasAuthorship W3040660552A5081019507 @default.
- W3040660552 hasConcept C108583219 @default.
- W3040660552 hasConcept C116675565 @default.
- W3040660552 hasConcept C119857082 @default.
- W3040660552 hasConcept C142724271 @default.
- W3040660552 hasConcept C150899416 @default.
- W3040660552 hasConcept C153180895 @default.
- W3040660552 hasConcept C154945302 @default.
- W3040660552 hasConcept C2779134260 @default.
- W3040660552 hasConcept C3006700255 @default.
- W3040660552 hasConcept C3007834351 @default.
- W3040660552 hasConcept C3008058167 @default.
- W3040660552 hasConcept C41008148 @default.
- W3040660552 hasConcept C50644808 @default.
- W3040660552 hasConcept C524204448 @default.
- W3040660552 hasConcept C71924100 @default.
- W3040660552 hasConcept C81363708 @default.
- W3040660552 hasConceptScore W3040660552C108583219 @default.
- W3040660552 hasConceptScore W3040660552C116675565 @default.
- W3040660552 hasConceptScore W3040660552C119857082 @default.
- W3040660552 hasConceptScore W3040660552C142724271 @default.
- W3040660552 hasConceptScore W3040660552C150899416 @default.
- W3040660552 hasConceptScore W3040660552C153180895 @default.
- W3040660552 hasConceptScore W3040660552C154945302 @default.
- W3040660552 hasConceptScore W3040660552C2779134260 @default.
- W3040660552 hasConceptScore W3040660552C3006700255 @default.
- W3040660552 hasConceptScore W3040660552C3007834351 @default.
- W3040660552 hasConceptScore W3040660552C3008058167 @default.
- W3040660552 hasConceptScore W3040660552C41008148 @default.
- W3040660552 hasConceptScore W3040660552C50644808 @default.
- W3040660552 hasConceptScore W3040660552C524204448 @default.
- W3040660552 hasConceptScore W3040660552C71924100 @default.
- W3040660552 hasConceptScore W3040660552C81363708 @default.
- W3040660552 hasIssue "15" @default.
- W3040660552 hasLocation W30406605521 @default.
- W3040660552 hasOpenAccess W3040660552 @default.
- W3040660552 hasPrimaryLocation W30406605521 @default.
- W3040660552 hasRelatedWork W3018421652 @default.
- W3040660552 hasRelatedWork W3021430260 @default.
- W3040660552 hasRelatedWork W3091976719 @default.
- W3040660552 hasRelatedWork W3192840557 @default.
- W3040660552 hasRelatedWork W4220996320 @default.