Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040690198> ?p ?o ?g. }
- W3040690198 abstract "Abstract An accurate understanding of the matrix-fracture mass transfer is fundamental to the modeling of fractured reservoirs. Nevertheless, the difficulty in an appropriate representation of this process comes from the fact that matrix and fracture interact in a particular manner depending on physical mechanisms as capillary imbibition. Capillary imbibition is considered through wettability in several mass transfer formulations (also called transfer functions) as the main mass driving force between matrix and fracture. This paper provides simulation results of waterflooding in two different scales of fractured models: Core plug models and extended models (a quarter of 5-spot), aiming to evaluate the influence of wettability and flow rate alteration on the matrix-fracture mass transfer. The methodology applied is based on sensitivity analyzes of wettability and flow rates scenarios, comparing parameters involved in matrix-fracture mass transfer: capillary continuity, fluid transfer rate, and hydraulic conductivity of the fracture system. The methodology is divided into three main parts. Initially, single-porosity models with an induced longitudinally fracture at laboratory scale are simulated, to obtain accurate models in terms of representative responses for wettability and flow rate changes. Secondly, dual-porosity/permeability models are constructed also at laboratory scale to analyze and compare answers to mass transfer. As a third stage, extended models are created attempting to analyze the impacts of sensitivity parameters of mass transfer on a larger scale. Results show that the increase of rock preference for water leads to highest oil recovery factors at low and high-water injection rates, benefiting mainly from the water spontaneous imbibition. Notably, the spontaneous imbibition in these cases is more considerable in low-rate scenarios, due to its larger contact time with water and rock. However, the increment on production may not be economically feasible, because of the long time (high pore volumes injected) needed to get this increase. In contrast, intermediate and oil-wet scenarios exhibit low oil sweep and displacement efficiency at low and high-water injection rates. Accordingly, these scenarios reach water breakthrough quickly and exhibit a less accentuated tendency to water saturation alterations if compared with a water-wet scenario. Results from single-porosity models show a good agreement between the water saturation distributions along the length and the effect of the induced fracture, validating its use. Results also reflect the effects of the fractured porous media formulations at both model scales as well as the effects of the shape-factors. In a numerical simulation study, this work shows the importance of close interaction between the wettability, flow rate changes, and the parameters that control matrix-fracture mass transfer. At last, the significance of these sensitive parameters is also demonstrated." @default.
- W3040690198 created "2020-07-16" @default.
- W3040690198 creator A5016244998 @default.
- W3040690198 creator A5019941387 @default.
- W3040690198 creator A5020266487 @default.
- W3040690198 creator A5036746569 @default.
- W3040690198 creator A5039863697 @default.
- W3040690198 creator A5061103281 @default.
- W3040690198 creator A5062842843 @default.
- W3040690198 creator A5076676198 @default.
- W3040690198 date "2020-07-20" @default.
- W3040690198 modified "2023-09-30" @default.
- W3040690198 title "Influence of Wettability and Flow Rate Changes in the Mass Transfer for Simulation of Fractured Reservoirs" @default.
- W3040690198 cites W1510543474 @default.
- W3040690198 cites W1965274408 @default.
- W3040690198 cites W1976350922 @default.
- W3040690198 cites W1982394863 @default.
- W3040690198 cites W1986694331 @default.
- W3040690198 cites W1991340864 @default.
- W3040690198 cites W1992385738 @default.
- W3040690198 cites W1992895112 @default.
- W3040690198 cites W2010100627 @default.
- W3040690198 cites W2017048267 @default.
- W3040690198 cites W2031711003 @default.
- W3040690198 cites W2032145975 @default.
- W3040690198 cites W2045229670 @default.
- W3040690198 cites W2046070200 @default.
- W3040690198 cites W2057807154 @default.
- W3040690198 cites W2062684873 @default.
- W3040690198 cites W2062820834 @default.
- W3040690198 cites W2062946869 @default.
- W3040690198 cites W2090658893 @default.
- W3040690198 cites W2101138668 @default.
- W3040690198 cites W2116495447 @default.
- W3040690198 cites W2473501803 @default.
- W3040690198 cites W2484372076 @default.
- W3040690198 cites W2542551269 @default.
- W3040690198 cites W2975434836 @default.
- W3040690198 cites W2031102999 @default.
- W3040690198 doi "https://doi.org/10.2118/198991-ms" @default.
- W3040690198 hasPublicationYear "2020" @default.
- W3040690198 type Work @default.
- W3040690198 sameAs 3040690198 @default.
- W3040690198 citedByCount "0" @default.
- W3040690198 crossrefType "proceedings-article" @default.
- W3040690198 hasAuthorship W3040690198A5016244998 @default.
- W3040690198 hasAuthorship W3040690198A5019941387 @default.
- W3040690198 hasAuthorship W3040690198A5020266487 @default.
- W3040690198 hasAuthorship W3040690198A5036746569 @default.
- W3040690198 hasAuthorship W3040690198A5039863697 @default.
- W3040690198 hasAuthorship W3040690198A5061103281 @default.
- W3040690198 hasAuthorship W3040690198A5062842843 @default.
- W3040690198 hasAuthorship W3040690198A5076676198 @default.
- W3040690198 hasConcept C100701293 @default.
- W3040690198 hasConcept C105569014 @default.
- W3040690198 hasConcept C106487976 @default.
- W3040690198 hasConcept C120882062 @default.
- W3040690198 hasConcept C121332964 @default.
- W3040690198 hasConcept C127313418 @default.
- W3040690198 hasConcept C127413603 @default.
- W3040690198 hasConcept C134514944 @default.
- W3040690198 hasConcept C159985019 @default.
- W3040690198 hasConcept C172120300 @default.
- W3040690198 hasConcept C185592680 @default.
- W3040690198 hasConcept C187320778 @default.
- W3040690198 hasConcept C192562407 @default.
- W3040690198 hasConcept C196806460 @default.
- W3040690198 hasConcept C21200559 @default.
- W3040690198 hasConcept C24326235 @default.
- W3040690198 hasConcept C2778409621 @default.
- W3040690198 hasConcept C38349280 @default.
- W3040690198 hasConcept C41625074 @default.
- W3040690198 hasConcept C43369102 @default.
- W3040690198 hasConcept C48797263 @default.
- W3040690198 hasConcept C51038369 @default.
- W3040690198 hasConcept C55493867 @default.
- W3040690198 hasConcept C57879066 @default.
- W3040690198 hasConcept C59822182 @default.
- W3040690198 hasConcept C6648577 @default.
- W3040690198 hasConcept C78762247 @default.
- W3040690198 hasConcept C86803240 @default.
- W3040690198 hasConceptScore W3040690198C100701293 @default.
- W3040690198 hasConceptScore W3040690198C105569014 @default.
- W3040690198 hasConceptScore W3040690198C106487976 @default.
- W3040690198 hasConceptScore W3040690198C120882062 @default.
- W3040690198 hasConceptScore W3040690198C121332964 @default.
- W3040690198 hasConceptScore W3040690198C127313418 @default.
- W3040690198 hasConceptScore W3040690198C127413603 @default.
- W3040690198 hasConceptScore W3040690198C134514944 @default.
- W3040690198 hasConceptScore W3040690198C159985019 @default.
- W3040690198 hasConceptScore W3040690198C172120300 @default.
- W3040690198 hasConceptScore W3040690198C185592680 @default.
- W3040690198 hasConceptScore W3040690198C187320778 @default.
- W3040690198 hasConceptScore W3040690198C192562407 @default.
- W3040690198 hasConceptScore W3040690198C196806460 @default.
- W3040690198 hasConceptScore W3040690198C21200559 @default.
- W3040690198 hasConceptScore W3040690198C24326235 @default.
- W3040690198 hasConceptScore W3040690198C2778409621 @default.
- W3040690198 hasConceptScore W3040690198C38349280 @default.
- W3040690198 hasConceptScore W3040690198C41625074 @default.