Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040694753> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3040694753 endingPage "3487" @default.
- W3040694753 startingPage "3478" @default.
- W3040694753 abstract "Integration of each aspect of the manufacturing process with the new generation of information technology such as the Internet of Things, big data, and cloud computing makes industrial manufacturing systems more flexible and intelligent. Industrial big data, recording all aspects of the industrial production process, contain the key value for industrial intelligence. For industrial manufacturing, an essential and widely used electronic device is the lithium-ion battery (LIB). However, accurately predicting the remaining useful life (RUL) of LIB is urgently needed to reduce unexpected maintenance and avoid accidents. Due to insufficient amount of degradation data, the prediction accuracy of data-driven methods is greatly limited. Besides, mathematical models established by model-driven methods to represent degradation process are unstable because of external factors like temperature. To solve this problem, a new LIB RUL prediction method based on improved convolution neural network (CNN) and long short-term memory (LSTM), namely Auto-CNN-LSTM, is proposed in this article. This method is developed based on deep CNN and LSTM to mine deeper information in finite data. In this method, an autoencoder is utilized to augment the dimensions of data for more effective training of CNN and LSTM. In order to obtain continuous and stable output, a filter to smooth the predicted value is used. Comparing with other commonly used methods, experiments on a real-world dataset demonstrate the effectiveness of the proposed method." @default.
- W3040694753 created "2020-07-16" @default.
- W3040694753 creator A5026291016 @default.
- W3040694753 creator A5028426177 @default.
- W3040694753 creator A5035225119 @default.
- W3040694753 creator A5043973941 @default.
- W3040694753 creator A5060713232 @default.
- W3040694753 creator A5069983278 @default.
- W3040694753 date "2021-05-01" @default.
- W3040694753 modified "2023-10-16" @default.
- W3040694753 title "A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life" @default.
- W3040694753 cites W1993220529 @default.
- W3040694753 cites W2060558956 @default.
- W3040694753 cites W2062167409 @default.
- W3040694753 cites W2078279667 @default.
- W3040694753 cites W2080943598 @default.
- W3040694753 cites W2096976414 @default.
- W3040694753 cites W2115233498 @default.
- W3040694753 cites W2127342270 @default.
- W3040694753 cites W2161138491 @default.
- W3040694753 cites W2589111654 @default.
- W3040694753 cites W2740136822 @default.
- W3040694753 cites W2770378831 @default.
- W3040694753 cites W2772066491 @default.
- W3040694753 cites W2774791859 @default.
- W3040694753 cites W2788805965 @default.
- W3040694753 cites W2792931786 @default.
- W3040694753 cites W2883525675 @default.
- W3040694753 cites W2893647509 @default.
- W3040694753 cites W2974843368 @default.
- W3040694753 cites W2975124241 @default.
- W3040694753 cites W2998765113 @default.
- W3040694753 cites W2998908795 @default.
- W3040694753 cites W3001393655 @default.
- W3040694753 cites W3033009913 @default.
- W3040694753 cites W3034190797 @default.
- W3040694753 cites W3037764089 @default.
- W3040694753 doi "https://doi.org/10.1109/tii.2020.3008223" @default.
- W3040694753 hasPublicationYear "2021" @default.
- W3040694753 type Work @default.
- W3040694753 sameAs 3040694753 @default.
- W3040694753 citedByCount "183" @default.
- W3040694753 countsByYear W30406947532020 @default.
- W3040694753 countsByYear W30406947532021 @default.
- W3040694753 countsByYear W30406947532022 @default.
- W3040694753 countsByYear W30406947532023 @default.
- W3040694753 crossrefType "journal-article" @default.
- W3040694753 hasAuthorship W3040694753A5026291016 @default.
- W3040694753 hasAuthorship W3040694753A5028426177 @default.
- W3040694753 hasAuthorship W3040694753A5035225119 @default.
- W3040694753 hasAuthorship W3040694753A5043973941 @default.
- W3040694753 hasAuthorship W3040694753A5060713232 @default.
- W3040694753 hasAuthorship W3040694753A5069983278 @default.
- W3040694753 hasConcept C121332964 @default.
- W3040694753 hasConcept C134018914 @default.
- W3040694753 hasConcept C154945302 @default.
- W3040694753 hasConcept C163258240 @default.
- W3040694753 hasConcept C2778541603 @default.
- W3040694753 hasConcept C2779197387 @default.
- W3040694753 hasConcept C41008148 @default.
- W3040694753 hasConcept C555008776 @default.
- W3040694753 hasConcept C62520636 @default.
- W3040694753 hasConcept C67186912 @default.
- W3040694753 hasConcept C71924100 @default.
- W3040694753 hasConcept C77088390 @default.
- W3040694753 hasConceptScore W3040694753C121332964 @default.
- W3040694753 hasConceptScore W3040694753C134018914 @default.
- W3040694753 hasConceptScore W3040694753C154945302 @default.
- W3040694753 hasConceptScore W3040694753C163258240 @default.
- W3040694753 hasConceptScore W3040694753C2778541603 @default.
- W3040694753 hasConceptScore W3040694753C2779197387 @default.
- W3040694753 hasConceptScore W3040694753C41008148 @default.
- W3040694753 hasConceptScore W3040694753C555008776 @default.
- W3040694753 hasConceptScore W3040694753C62520636 @default.
- W3040694753 hasConceptScore W3040694753C67186912 @default.
- W3040694753 hasConceptScore W3040694753C71924100 @default.
- W3040694753 hasConceptScore W3040694753C77088390 @default.
- W3040694753 hasFunder F4320321001 @default.
- W3040694753 hasIssue "5" @default.
- W3040694753 hasLocation W30406947531 @default.
- W3040694753 hasOpenAccess W3040694753 @default.
- W3040694753 hasPrimaryLocation W30406947531 @default.
- W3040694753 hasRelatedWork W1959830367 @default.
- W3040694753 hasRelatedWork W2007739424 @default.
- W3040694753 hasRelatedWork W2043458945 @default.
- W3040694753 hasRelatedWork W2335674404 @default.
- W3040694753 hasRelatedWork W2527667974 @default.
- W3040694753 hasRelatedWork W2960359457 @default.
- W3040694753 hasRelatedWork W3088089428 @default.
- W3040694753 hasRelatedWork W3172679363 @default.
- W3040694753 hasRelatedWork W4224291423 @default.
- W3040694753 hasRelatedWork W4298120688 @default.
- W3040694753 hasVolume "17" @default.
- W3040694753 isParatext "false" @default.
- W3040694753 isRetracted "false" @default.
- W3040694753 magId "3040694753" @default.
- W3040694753 workType "article" @default.