Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040694766> ?p ?o ?g. }
- W3040694766 abstract "Deep convolutional neural networks (CNN) have been applied for image dehazing tasks, where the residual network (ResNet) is often adopted as the basic component to avoid the vanishing gradient problem. Recently, many works indicate that the ResNet can be considered as the explicit Euler forward approximation of an ordinary differential equation (ODE). In this paper, we extend the explicit forward approximation to the implicit backward counterpart, which can be realized via a recursive neural network, named IM-block. Given that, we propose an efficient end-to-end multi-level implicit network (MI-Net) for the single image dehazing problem. Moreover, multi-level fusing (MLF) mechanism and residual channel attention block (RCA-block) are adopted to boost performance of our network. Experiments on several dehazing benchmark datasets demonstrate that our method outperforms existing methods and achieves the state-of-the-art performance." @default.
- W3040694766 created "2020-07-16" @default.
- W3040694766 creator A5051008303 @default.
- W3040694766 creator A5062442721 @default.
- W3040694766 creator A5067222034 @default.
- W3040694766 creator A5069540177 @default.
- W3040694766 creator A5073032922 @default.
- W3040694766 date "2020-07-13" @default.
- W3040694766 modified "2023-09-28" @default.
- W3040694766 title "Implicit Euler ODE Networks for Single-Image Dehazing" @default.
- W3040694766 cites W1985066542 @default.
- W3040694766 cites W2028990532 @default.
- W3040694766 cites W2077862666 @default.
- W3040694766 cites W2114867966 @default.
- W3040694766 cites W2128254161 @default.
- W3040694766 cites W2133665775 @default.
- W3040694766 cites W2194775991 @default.
- W3040694766 cites W2256362396 @default.
- W3040694766 cites W2340807170 @default.
- W3040694766 cites W2489516236 @default.
- W3040694766 cites W2502312327 @default.
- W3040694766 cites W2516255829 @default.
- W3040694766 cites W2519481857 @default.
- W3040694766 cites W2549267533 @default.
- W3040694766 cites W2565050484 @default.
- W3040694766 cites W2565639579 @default.
- W3040694766 cites W2592939477 @default.
- W3040694766 cites W2600297185 @default.
- W3040694766 cites W2698984883 @default.
- W3040694766 cites W2735224642 @default.
- W3040694766 cites W2756433771 @default.
- W3040694766 cites W2779176852 @default.
- W3040694766 cites W2791550762 @default.
- W3040694766 cites W2796417383 @default.
- W3040694766 cites W2798031977 @default.
- W3040694766 cites W2798876216 @default.
- W3040694766 cites W2898318847 @default.
- W3040694766 cites W2962944749 @default.
- W3040694766 cites W2963152299 @default.
- W3040694766 cites W2963420686 @default.
- W3040694766 cites W2963840672 @default.
- W3040694766 cites W2963928582 @default.
- W3040694766 cites W2963943912 @default.
- W3040694766 cites W2968878340 @default.
- W3040694766 cites W2971611393 @default.
- W3040694766 cites W2985030998 @default.
- W3040694766 cites W2997210448 @default.
- W3040694766 cites W2998249728 @default.
- W3040694766 cites W3098011980 @default.
- W3040694766 cites W63091017 @default.
- W3040694766 doi "https://doi.org/10.48550/arxiv.2007.06443" @default.
- W3040694766 hasPublicationYear "2020" @default.
- W3040694766 type Work @default.
- W3040694766 sameAs 3040694766 @default.
- W3040694766 citedByCount "0" @default.
- W3040694766 crossrefType "posted-content" @default.
- W3040694766 hasAuthorship W3040694766A5051008303 @default.
- W3040694766 hasAuthorship W3040694766A5062442721 @default.
- W3040694766 hasAuthorship W3040694766A5067222034 @default.
- W3040694766 hasAuthorship W3040694766A5069540177 @default.
- W3040694766 hasAuthorship W3040694766A5073032922 @default.
- W3040694766 hasBestOaLocation W30406947661 @default.
- W3040694766 hasConcept C11413529 @default.
- W3040694766 hasConcept C115961682 @default.
- W3040694766 hasConcept C13280743 @default.
- W3040694766 hasConcept C134306372 @default.
- W3040694766 hasConcept C154945302 @default.
- W3040694766 hasConcept C155512373 @default.
- W3040694766 hasConcept C185798385 @default.
- W3040694766 hasConcept C205649164 @default.
- W3040694766 hasConcept C2524010 @default.
- W3040694766 hasConcept C2777210771 @default.
- W3040694766 hasConcept C28826006 @default.
- W3040694766 hasConcept C33923547 @default.
- W3040694766 hasConcept C34862557 @default.
- W3040694766 hasConcept C38409319 @default.
- W3040694766 hasConcept C41008148 @default.
- W3040694766 hasConcept C51544822 @default.
- W3040694766 hasConcept C62884695 @default.
- W3040694766 hasConcept C768646 @default.
- W3040694766 hasConcept C78045399 @default.
- W3040694766 hasConcept C81363708 @default.
- W3040694766 hasConceptScore W3040694766C11413529 @default.
- W3040694766 hasConceptScore W3040694766C115961682 @default.
- W3040694766 hasConceptScore W3040694766C13280743 @default.
- W3040694766 hasConceptScore W3040694766C134306372 @default.
- W3040694766 hasConceptScore W3040694766C154945302 @default.
- W3040694766 hasConceptScore W3040694766C155512373 @default.
- W3040694766 hasConceptScore W3040694766C185798385 @default.
- W3040694766 hasConceptScore W3040694766C205649164 @default.
- W3040694766 hasConceptScore W3040694766C2524010 @default.
- W3040694766 hasConceptScore W3040694766C2777210771 @default.
- W3040694766 hasConceptScore W3040694766C28826006 @default.
- W3040694766 hasConceptScore W3040694766C33923547 @default.
- W3040694766 hasConceptScore W3040694766C34862557 @default.
- W3040694766 hasConceptScore W3040694766C38409319 @default.
- W3040694766 hasConceptScore W3040694766C41008148 @default.
- W3040694766 hasConceptScore W3040694766C51544822 @default.
- W3040694766 hasConceptScore W3040694766C62884695 @default.
- W3040694766 hasConceptScore W3040694766C768646 @default.