Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040708241> ?p ?o ?g. }
- W3040708241 endingPage "113763" @default.
- W3040708241 startingPage "113763" @default.
- W3040708241 abstract "We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse autoencoders, which reduce the dimensionality of the full order model to a set of sparse latent variables with no prior knowledge of the coded space dimensionality. Then, a second neural network is trained to learn the metriplectic structure of those reduced physical variables and predict its time evolution with a so-called structure-preserving neural network. This data-based integrator is guaranteed to conserve the total energy of the system and the entropy inequality, and can be applied to both conservative and dissipative systems. The integrated paths can then be decoded to the original full-dimensional manifold and be compared to the ground truth solution. This method is tested with two examples applied to fluid and solid mechanics." @default.
- W3040708241 created "2020-07-16" @default.
- W3040708241 creator A5024406335 @default.
- W3040708241 creator A5062200261 @default.
- W3040708241 creator A5066840452 @default.
- W3040708241 creator A5076212934 @default.
- W3040708241 creator A5083504898 @default.
- W3040708241 date "2021-06-01" @default.
- W3040708241 modified "2023-10-14" @default.
- W3040708241 title "Deep learning of thermodynamics-aware reduced-order models from data" @default.
- W3040708241 cites W1983639022 @default.
- W3040708241 cites W1997471169 @default.
- W3040708241 cites W1998827738 @default.
- W3040708241 cites W1999110794 @default.
- W3040708241 cites W2044492748 @default.
- W3040708241 cites W2076063813 @default.
- W3040708241 cites W2102753028 @default.
- W3040708241 cites W2104388595 @default.
- W3040708241 cites W2147414751 @default.
- W3040708241 cites W2324049448 @default.
- W3040708241 cites W2600297185 @default.
- W3040708241 cites W2802510638 @default.
- W3040708241 cites W2804156115 @default.
- W3040708241 cites W2889504592 @default.
- W3040708241 cites W2899283552 @default.
- W3040708241 cites W2907233076 @default.
- W3040708241 cites W2939631413 @default.
- W3040708241 cites W2946680387 @default.
- W3040708241 cites W2963693826 @default.
- W3040708241 cites W2986795381 @default.
- W3040708241 cites W2997405608 @default.
- W3040708241 cites W3021128674 @default.
- W3040708241 cites W3035693890 @default.
- W3040708241 cites W3106403396 @default.
- W3040708241 doi "https://doi.org/10.1016/j.cma.2021.113763" @default.
- W3040708241 hasPublicationYear "2021" @default.
- W3040708241 type Work @default.
- W3040708241 sameAs 3040708241 @default.
- W3040708241 citedByCount "42" @default.
- W3040708241 countsByYear W30407082412020 @default.
- W3040708241 countsByYear W30407082412021 @default.
- W3040708241 countsByYear W30407082412022 @default.
- W3040708241 countsByYear W30407082412023 @default.
- W3040708241 crossrefType "journal-article" @default.
- W3040708241 hasAuthorship W3040708241A5024406335 @default.
- W3040708241 hasAuthorship W3040708241A5062200261 @default.
- W3040708241 hasAuthorship W3040708241A5066840452 @default.
- W3040708241 hasAuthorship W3040708241A5076212934 @default.
- W3040708241 hasAuthorship W3040708241A5083504898 @default.
- W3040708241 hasBestOaLocation W30407082411 @default.
- W3040708241 hasConcept C106301342 @default.
- W3040708241 hasConcept C111030470 @default.
- W3040708241 hasConcept C11413529 @default.
- W3040708241 hasConcept C121332964 @default.
- W3040708241 hasConcept C134306372 @default.
- W3040708241 hasConcept C154945302 @default.
- W3040708241 hasConcept C2776257435 @default.
- W3040708241 hasConcept C28826006 @default.
- W3040708241 hasConcept C31258907 @default.
- W3040708241 hasConcept C33923547 @default.
- W3040708241 hasConcept C41008148 @default.
- W3040708241 hasConcept C50644808 @default.
- W3040708241 hasConcept C51167844 @default.
- W3040708241 hasConcept C62520636 @default.
- W3040708241 hasConcept C73000952 @default.
- W3040708241 hasConcept C79518650 @default.
- W3040708241 hasConcept C99692599 @default.
- W3040708241 hasConceptScore W3040708241C106301342 @default.
- W3040708241 hasConceptScore W3040708241C111030470 @default.
- W3040708241 hasConceptScore W3040708241C11413529 @default.
- W3040708241 hasConceptScore W3040708241C121332964 @default.
- W3040708241 hasConceptScore W3040708241C134306372 @default.
- W3040708241 hasConceptScore W3040708241C154945302 @default.
- W3040708241 hasConceptScore W3040708241C2776257435 @default.
- W3040708241 hasConceptScore W3040708241C28826006 @default.
- W3040708241 hasConceptScore W3040708241C31258907 @default.
- W3040708241 hasConceptScore W3040708241C33923547 @default.
- W3040708241 hasConceptScore W3040708241C41008148 @default.
- W3040708241 hasConceptScore W3040708241C50644808 @default.
- W3040708241 hasConceptScore W3040708241C51167844 @default.
- W3040708241 hasConceptScore W3040708241C62520636 @default.
- W3040708241 hasConceptScore W3040708241C73000952 @default.
- W3040708241 hasConceptScore W3040708241C79518650 @default.
- W3040708241 hasConceptScore W3040708241C99692599 @default.
- W3040708241 hasLocation W30407082411 @default.
- W3040708241 hasLocation W30407082412 @default.
- W3040708241 hasLocation W30407082413 @default.
- W3040708241 hasLocation W30407082414 @default.
- W3040708241 hasLocation W30407082415 @default.
- W3040708241 hasLocation W30407082416 @default.
- W3040708241 hasLocation W30407082417 @default.
- W3040708241 hasLocation W30407082418 @default.
- W3040708241 hasOpenAccess W3040708241 @default.
- W3040708241 hasPrimaryLocation W30407082411 @default.
- W3040708241 hasRelatedWork W1835795204 @default.
- W3040708241 hasRelatedWork W2064523977 @default.
- W3040708241 hasRelatedWork W2467932174 @default.
- W3040708241 hasRelatedWork W2497694760 @default.