Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040756342> ?p ?o ?g. }
- W3040756342 endingPage "1013" @default.
- W3040756342 startingPage "982" @default.
- W3040756342 abstract "Purpose The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow, surface roughness and wall surface or zeta potential. Due to zeta potential, an electrical double layer (EDL) is formed in the vicinity of the wall surface, namely, the stern layer (layer of immobile ions) and diffuse layer (layer of mobile ions). Hence, its competent designs demand more efficient micro-scale mixing mechanisms. This paper aims to therefore carry out numerical investigations of electro osmotic flow and mixing in a constricted microchannel by modifying the existing immersed boundary method. Design/methodology/approach The numerical solution of electro-osmotic flow is obtained by linking Navier–Stokes equation with Poisson and Nernst–Planck equation for electric field and transportation of ion, respectively. Fluids with different concentrations enter the microchannel and its mixing along its way is simulated by solving the governing equation specified for the concentration field. Both the electro-osmotic effects and channel constriction constitute a hybrid mixing technique, a combination of passive and active methods. In microchannels, the chief factors affecting the mixing efficiency were studied efficiently from results obtained numerically. Findings The results indicate that the mixing efficiency is influenced with a change in zeta potential ( ζ ), number of triangular obstacles, EDL thickness ( λ ). Mixing efficiency decreases with an increment in external electric field strength (Ex), Peclet number (Pe) and Reynolds number (Re). Mixing efficiency is increased from 28.2 to 50.2% with an increase in the number of triangular obstacles from 1 to 5. As the value of Re and Pe is decreased, the overall percentage increase in the mixing efficiency is 56.4% for the case of a mixing micro-channel constricted with five triangular obstacles. It is also vivid that as the EDL overlaps in the micro-channel, the mixing efficiency is 52.7% for the given zeta potential, Re and Pe values. The findings of this study may be useful in biomedical, biotechnological, drug delivery applications, cooling of microchips and deoxyribonucleic acid hybridization. Originality/value The process of mixing in microchannels is widely studied due to its application in various microfluidic devices like micro electromechanical systems and lab-on-a-chip devices. Hence, its competent designs demand more efficient micro-scale mixing mechanisms. The present study carries out numerical investigations by modifying the existing immersed boundary method, on pressure-driven electro osmotic flow and mixing in a constricted microchannel using the varied number of triangular obstacles by using a modified immersed boundary method. In microchannels, the theory of EDL combined with pressure-driven flow elucidates the electro-osmotic flow." @default.
- W3040756342 created "2020-07-16" @default.
- W3040756342 creator A5011940121 @default.
- W3040756342 creator A5023330091 @default.
- W3040756342 creator A5024419134 @default.
- W3040756342 creator A5030916430 @default.
- W3040756342 creator A5052879081 @default.
- W3040756342 creator A5053685870 @default.
- W3040756342 creator A5083190086 @default.
- W3040756342 creator A5084721473 @default.
- W3040756342 date "2020-07-07" @default.
- W3040756342 modified "2023-10-14" @default.
- W3040756342 title "Numerical investigation on pressure-driven electro osmatic flow and mixing in a constricted micro channel by triangular obstacle" @default.
- W3040756342 cites W1494505411 @default.
- W3040756342 cites W1965878321 @default.
- W3040756342 cites W1970636632 @default.
- W3040756342 cites W1981945162 @default.
- W3040756342 cites W1984426476 @default.
- W3040756342 cites W1997639473 @default.
- W3040756342 cites W1997815093 @default.
- W3040756342 cites W1997903314 @default.
- W3040756342 cites W1998237130 @default.
- W3040756342 cites W2001318165 @default.
- W3040756342 cites W2008093801 @default.
- W3040756342 cites W2015802958 @default.
- W3040756342 cites W2020890537 @default.
- W3040756342 cites W2023772103 @default.
- W3040756342 cites W2030018533 @default.
- W3040756342 cites W2032532852 @default.
- W3040756342 cites W2032899773 @default.
- W3040756342 cites W2034007991 @default.
- W3040756342 cites W2041515614 @default.
- W3040756342 cites W2046184408 @default.
- W3040756342 cites W2058564757 @default.
- W3040756342 cites W2060456964 @default.
- W3040756342 cites W2073228126 @default.
- W3040756342 cites W2102497978 @default.
- W3040756342 cites W2103198620 @default.
- W3040756342 cites W2106966231 @default.
- W3040756342 cites W2123346429 @default.
- W3040756342 cites W2163823261 @default.
- W3040756342 cites W2165699826 @default.
- W3040756342 cites W2512752315 @default.
- W3040756342 cites W2891411888 @default.
- W3040756342 cites W2907790705 @default.
- W3040756342 cites W2914318352 @default.
- W3040756342 cites W2960509819 @default.
- W3040756342 cites W2986269908 @default.
- W3040756342 doi "https://doi.org/10.1108/hff-06-2020-0349" @default.
- W3040756342 hasPublicationYear "2020" @default.
- W3040756342 type Work @default.
- W3040756342 sameAs 3040756342 @default.
- W3040756342 citedByCount "3" @default.
- W3040756342 countsByYear W30407563422022 @default.
- W3040756342 countsByYear W30407563422023 @default.
- W3040756342 crossrefType "journal-article" @default.
- W3040756342 hasAuthorship W3040756342A5011940121 @default.
- W3040756342 hasAuthorship W3040756342A5023330091 @default.
- W3040756342 hasAuthorship W3040756342A5024419134 @default.
- W3040756342 hasAuthorship W3040756342A5030916430 @default.
- W3040756342 hasAuthorship W3040756342A5052879081 @default.
- W3040756342 hasAuthorship W3040756342A5053685870 @default.
- W3040756342 hasAuthorship W3040756342A5083190086 @default.
- W3040756342 hasAuthorship W3040756342A5084721473 @default.
- W3040756342 hasConcept C111603439 @default.
- W3040756342 hasConcept C121332964 @default.
- W3040756342 hasConcept C138777275 @default.
- W3040756342 hasConcept C182748727 @default.
- W3040756342 hasConcept C19191322 @default.
- W3040756342 hasConcept C192562407 @default.
- W3040756342 hasConcept C196558001 @default.
- W3040756342 hasConcept C205684552 @default.
- W3040756342 hasConcept C38349280 @default.
- W3040756342 hasConcept C57879066 @default.
- W3040756342 hasConcept C62520636 @default.
- W3040756342 hasConcept C63662833 @default.
- W3040756342 hasConcept C76563973 @default.
- W3040756342 hasConcept C97355855 @default.
- W3040756342 hasConceptScore W3040756342C111603439 @default.
- W3040756342 hasConceptScore W3040756342C121332964 @default.
- W3040756342 hasConceptScore W3040756342C138777275 @default.
- W3040756342 hasConceptScore W3040756342C182748727 @default.
- W3040756342 hasConceptScore W3040756342C19191322 @default.
- W3040756342 hasConceptScore W3040756342C192562407 @default.
- W3040756342 hasConceptScore W3040756342C196558001 @default.
- W3040756342 hasConceptScore W3040756342C205684552 @default.
- W3040756342 hasConceptScore W3040756342C38349280 @default.
- W3040756342 hasConceptScore W3040756342C57879066 @default.
- W3040756342 hasConceptScore W3040756342C62520636 @default.
- W3040756342 hasConceptScore W3040756342C63662833 @default.
- W3040756342 hasConceptScore W3040756342C76563973 @default.
- W3040756342 hasConceptScore W3040756342C97355855 @default.
- W3040756342 hasIssue "3" @default.
- W3040756342 hasLocation W30407563421 @default.
- W3040756342 hasOpenAccess W3040756342 @default.
- W3040756342 hasPrimaryLocation W30407563421 @default.
- W3040756342 hasRelatedWork W1633010776 @default.
- W3040756342 hasRelatedWork W1991982450 @default.