Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040768903> ?p ?o ?g. }
- W3040768903 endingPage "21" @default.
- W3040768903 startingPage "13" @default.
- W3040768903 abstract "Regardless of the existing governmental and public preventive actions for surveillance and controlling the air quality in several regions of the Chennai city in India, the air quality does not meet the desired standard. In this regard, this study employs an ARMA/ARIMA modelling approach for forecasting Respirable Suspended Particulate Matter (RSPM), Sulphur dioxide (SO 2 ) and Nitrogen dioxide (NO 2 ) concentration for three most polluted sites in Chennai city. A total of nine univariate linear stochastic models have been developed, three for each of the stations which includes one for each of the specific pollutants in order to forecasts the concentration of each pollutant. The evaluation of the model statistics R 2 values and index of agreement values evince that a significant level of real-time forecasting of the pollutants can be achieved by employing the developed ARMA/ARIMA models. Moreover, the comparisons of actual air pollutant concentration have been carried out with the permissible limit as prescribed by the National ambient air quality standards (NAAQS) of India for assessing the level of pollution of all three locations." @default.
- W3040768903 created "2020-07-16" @default.
- W3040768903 creator A5002268905 @default.
- W3040768903 creator A5018477234 @default.
- W3040768903 creator A5050544134 @default.
- W3040768903 date "2020-10-02" @default.
- W3040768903 modified "2023-09-26" @default.
- W3040768903 title "Analyzing and forecasting ambient air quality of Chennai city in India" @default.
- W3040768903 cites W1481169268 @default.
- W3040768903 cites W1963511811 @default.
- W3040768903 cites W1966676388 @default.
- W3040768903 cites W1982186338 @default.
- W3040768903 cites W1985355391 @default.
- W3040768903 cites W1996090442 @default.
- W3040768903 cites W2007512556 @default.
- W3040768903 cites W2024078558 @default.
- W3040768903 cites W2033412785 @default.
- W3040768903 cites W2035377436 @default.
- W3040768903 cites W2036359219 @default.
- W3040768903 cites W2041471468 @default.
- W3040768903 cites W2048347611 @default.
- W3040768903 cites W2053877272 @default.
- W3040768903 cites W2084626416 @default.
- W3040768903 cites W2100036870 @default.
- W3040768903 cites W2111286455 @default.
- W3040768903 cites W2125848133 @default.
- W3040768903 cites W2158196600 @default.
- W3040768903 cites W2168175751 @default.
- W3040768903 cites W2608397701 @default.
- W3040768903 cites W2687560032 @default.
- W3040768903 cites W2773159471 @default.
- W3040768903 cites W2794526935 @default.
- W3040768903 cites W2798056406 @default.
- W3040768903 cites W2898166126 @default.
- W3040768903 cites W2902455337 @default.
- W3040768903 cites W2973041928 @default.
- W3040768903 cites W2998571818 @default.
- W3040768903 cites W385004530 @default.
- W3040768903 cites W4211027311 @default.
- W3040768903 cites W566857321 @default.
- W3040768903 doi "https://doi.org/10.24057/2071-9388-2019-97" @default.
- W3040768903 hasPublicationYear "2020" @default.
- W3040768903 type Work @default.
- W3040768903 sameAs 3040768903 @default.
- W3040768903 citedByCount "5" @default.
- W3040768903 countsByYear W30407689032020 @default.
- W3040768903 countsByYear W30407689032021 @default.
- W3040768903 countsByYear W30407689032022 @default.
- W3040768903 countsByYear W30407689032023 @default.
- W3040768903 crossrefType "journal-article" @default.
- W3040768903 hasAuthorship W3040768903A5002268905 @default.
- W3040768903 hasAuthorship W3040768903A5018477234 @default.
- W3040768903 hasAuthorship W3040768903A5050544134 @default.
- W3040768903 hasBestOaLocation W30407689031 @default.
- W3040768903 hasConcept C105795698 @default.
- W3040768903 hasConcept C126314574 @default.
- W3040768903 hasConcept C136764020 @default.
- W3040768903 hasConcept C151406439 @default.
- W3040768903 hasConcept C153294291 @default.
- W3040768903 hasConcept C161584116 @default.
- W3040768903 hasConcept C178790620 @default.
- W3040768903 hasConcept C180949853 @default.
- W3040768903 hasConcept C185592680 @default.
- W3040768903 hasConcept C18903297 @default.
- W3040768903 hasConcept C199163554 @default.
- W3040768903 hasConcept C205649164 @default.
- W3040768903 hasConcept C24245907 @default.
- W3040768903 hasConcept C24338571 @default.
- W3040768903 hasConcept C2776119857 @default.
- W3040768903 hasConcept C2777382242 @default.
- W3040768903 hasConcept C2777570903 @default.
- W3040768903 hasConcept C2780447027 @default.
- W3040768903 hasConcept C2780723490 @default.
- W3040768903 hasConcept C2987853052 @default.
- W3040768903 hasConcept C33923547 @default.
- W3040768903 hasConcept C39432304 @default.
- W3040768903 hasConcept C41008148 @default.
- W3040768903 hasConcept C521259446 @default.
- W3040768903 hasConcept C559116025 @default.
- W3040768903 hasConcept C82257358 @default.
- W3040768903 hasConcept C82685317 @default.
- W3040768903 hasConcept C86803240 @default.
- W3040768903 hasConcept C87717796 @default.
- W3040768903 hasConceptScore W3040768903C105795698 @default.
- W3040768903 hasConceptScore W3040768903C126314574 @default.
- W3040768903 hasConceptScore W3040768903C136764020 @default.
- W3040768903 hasConceptScore W3040768903C151406439 @default.
- W3040768903 hasConceptScore W3040768903C153294291 @default.
- W3040768903 hasConceptScore W3040768903C161584116 @default.
- W3040768903 hasConceptScore W3040768903C178790620 @default.
- W3040768903 hasConceptScore W3040768903C180949853 @default.
- W3040768903 hasConceptScore W3040768903C185592680 @default.
- W3040768903 hasConceptScore W3040768903C18903297 @default.
- W3040768903 hasConceptScore W3040768903C199163554 @default.
- W3040768903 hasConceptScore W3040768903C205649164 @default.
- W3040768903 hasConceptScore W3040768903C24245907 @default.
- W3040768903 hasConceptScore W3040768903C24338571 @default.
- W3040768903 hasConceptScore W3040768903C2776119857 @default.