Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040781605> ?p ?o ?g. }
- W3040781605 endingPage "155" @default.
- W3040781605 startingPage "146" @default.
- W3040781605 abstract "Current technological developments have allowed for a significant increase and availability of data. Consequently, this has opened enormous opportunities for the machine learning and data science field, translating into the development of new algorithms in a wide range of applications in medical, biomedical, daily-life, and national security areas. Ensemble techniques are among the pillars of the machine learning field, and they can be defined as approaches in which multiple, complex, independent/uncorrelated, predictive models are subsequently combined by either averaging or voting to yield a higher model performance. Random forest (RF), a popular ensemble method, has been successfully applied in various domains due to its ability to build predictive models with high certainty and little necessity of model optimization. RF provides both a predictive model and an estimation of the variable importance. However, the estimation of the variable importance is based on thousands of trees, and therefore, it does not specify which variable is important for which sample group. The present study demonstrates an approach based on the pseudo-sample principle that allows for construction of bi-plots (i.e. spin plots) associated with RF models. The pseudo-sample principle for RF. is explained and demonstrated by using two simulated datasets, and three different types of real data, which include political sciences, food chemistry and the human microbiome data. The pseudo-sample bi-plots, associated with RF and its unsupervised version, allow for a versatile visualization of multivariate models, and the variable importance and the relation among them." @default.
- W3040781605 created "2020-07-16" @default.
- W3040781605 creator A5011054210 @default.
- W3040781605 creator A5020112745 @default.
- W3040781605 creator A5020890629 @default.
- W3040781605 creator A5029895345 @default.
- W3040781605 creator A5030158045 @default.
- W3040781605 creator A5055828081 @default.
- W3040781605 creator A5058784327 @default.
- W3040781605 creator A5079517355 @default.
- W3040781605 date "2020-09-01" @default.
- W3040781605 modified "2023-09-30" @default.
- W3040781605 title "Constructing bi-plots for random forest: Tutorial" @default.
- W3040781605 cites W14024944 @default.
- W3040781605 cites W1990763503 @default.
- W3040781605 cites W2021833436 @default.
- W3040781605 cites W2045973430 @default.
- W3040781605 cites W2048793796 @default.
- W3040781605 cites W2069796584 @default.
- W3040781605 cites W2092927559 @default.
- W3040781605 cites W2104709532 @default.
- W3040781605 cites W2113521145 @default.
- W3040781605 cites W2115380778 @default.
- W3040781605 cites W2128458452 @default.
- W3040781605 cites W2154026962 @default.
- W3040781605 cites W2155660329 @default.
- W3040781605 cites W2168525608 @default.
- W3040781605 cites W2194365590 @default.
- W3040781605 cites W2295589360 @default.
- W3040781605 cites W2530003151 @default.
- W3040781605 cites W2592452407 @default.
- W3040781605 cites W2743504620 @default.
- W3040781605 cites W2789772275 @default.
- W3040781605 cites W2801727166 @default.
- W3040781605 cites W2901030206 @default.
- W3040781605 cites W2905076021 @default.
- W3040781605 cites W2911964244 @default.
- W3040781605 cites W2912201182 @default.
- W3040781605 cites W2914401602 @default.
- W3040781605 cites W2961156144 @default.
- W3040781605 cites W3177435192 @default.
- W3040781605 cites W4233149824 @default.
- W3040781605 cites W4233518166 @default.
- W3040781605 doi "https://doi.org/10.1016/j.aca.2020.06.043" @default.
- W3040781605 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32928475" @default.
- W3040781605 hasPublicationYear "2020" @default.
- W3040781605 type Work @default.
- W3040781605 sameAs 3040781605 @default.
- W3040781605 citedByCount "26" @default.
- W3040781605 countsByYear W30407816052020 @default.
- W3040781605 countsByYear W30407816052021 @default.
- W3040781605 countsByYear W30407816052022 @default.
- W3040781605 countsByYear W30407816052023 @default.
- W3040781605 crossrefType "journal-article" @default.
- W3040781605 hasAuthorship W3040781605A5011054210 @default.
- W3040781605 hasAuthorship W3040781605A5020112745 @default.
- W3040781605 hasAuthorship W3040781605A5020890629 @default.
- W3040781605 hasAuthorship W3040781605A5029895345 @default.
- W3040781605 hasAuthorship W3040781605A5030158045 @default.
- W3040781605 hasAuthorship W3040781605A5055828081 @default.
- W3040781605 hasAuthorship W3040781605A5058784327 @default.
- W3040781605 hasAuthorship W3040781605A5079517355 @default.
- W3040781605 hasBestOaLocation W30407816052 @default.
- W3040781605 hasConcept C119857082 @default.
- W3040781605 hasConcept C124101348 @default.
- W3040781605 hasConcept C127413603 @default.
- W3040781605 hasConcept C134306372 @default.
- W3040781605 hasConcept C146978453 @default.
- W3040781605 hasConcept C154945302 @default.
- W3040781605 hasConcept C161584116 @default.
- W3040781605 hasConcept C169258074 @default.
- W3040781605 hasConcept C182365436 @default.
- W3040781605 hasConcept C185592680 @default.
- W3040781605 hasConcept C198531522 @default.
- W3040781605 hasConcept C202444582 @default.
- W3040781605 hasConcept C204323151 @default.
- W3040781605 hasConcept C33923547 @default.
- W3040781605 hasConcept C41008148 @default.
- W3040781605 hasConcept C43617362 @default.
- W3040781605 hasConcept C9652623 @default.
- W3040781605 hasConceptScore W3040781605C119857082 @default.
- W3040781605 hasConceptScore W3040781605C124101348 @default.
- W3040781605 hasConceptScore W3040781605C127413603 @default.
- W3040781605 hasConceptScore W3040781605C134306372 @default.
- W3040781605 hasConceptScore W3040781605C146978453 @default.
- W3040781605 hasConceptScore W3040781605C154945302 @default.
- W3040781605 hasConceptScore W3040781605C161584116 @default.
- W3040781605 hasConceptScore W3040781605C169258074 @default.
- W3040781605 hasConceptScore W3040781605C182365436 @default.
- W3040781605 hasConceptScore W3040781605C185592680 @default.
- W3040781605 hasConceptScore W3040781605C198531522 @default.
- W3040781605 hasConceptScore W3040781605C202444582 @default.
- W3040781605 hasConceptScore W3040781605C204323151 @default.
- W3040781605 hasConceptScore W3040781605C33923547 @default.
- W3040781605 hasConceptScore W3040781605C41008148 @default.
- W3040781605 hasConceptScore W3040781605C43617362 @default.
- W3040781605 hasConceptScore W3040781605C9652623 @default.
- W3040781605 hasFunder F4320321800 @default.