Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040814892> ?p ?o ?g. }
- W3040814892 endingPage "131460" @default.
- W3040814892 startingPage "131449" @default.
- W3040814892 abstract "This article provides a method based on self-organizing maps (SOM) neural network clustering and support vector machine (SVM) ensembles to predict the survival risk levels of esophageal cancer. Nine blood indexes related to patient survival are found by using SOM clustering method. Two critical thresholds for survival are found by plotting the receiver operating characteristic (ROC) curve twice, and the lifetime is divided into three risk levels. Using the SVM method, patients' risk levels are predicted and assessed. Four kernel functions of SVM are compared, and the prediction effect of RBF kernel function is better than other kernel functions. The parameters of SVM are optimized by using genetic algorithm (GA), particle swarm algorithm (PSO) and artificial bee colony (ABC) algorithm. Experimental results show that the prediction accuracies are improved by using optimization algorithms. After comparison, ABC-SVM has better prediction results than GA-SVM and PSO-SVM with a high prediction rate and fast running time." @default.
- W3040814892 created "2020-07-16" @default.
- W3040814892 creator A5009017304 @default.
- W3040814892 creator A5022832205 @default.
- W3040814892 creator A5029822464 @default.
- W3040814892 creator A5037191727 @default.
- W3040814892 creator A5046079536 @default.
- W3040814892 creator A5066223731 @default.
- W3040814892 date "2020-01-01" @default.
- W3040814892 modified "2023-10-15" @default.
- W3040814892 title "Survival Risk Prediction of Esophageal Cancer Based on Self-Organizing Maps Clustering and Support Vector Machine Ensembles" @default.
- W3040814892 cites W1978702499 @default.
- W3040814892 cites W2090727353 @default.
- W3040814892 cites W2104428586 @default.
- W3040814892 cites W2104492856 @default.
- W3040814892 cites W2108708838 @default.
- W3040814892 cites W2290883490 @default.
- W3040814892 cites W2498679987 @default.
- W3040814892 cites W2553852618 @default.
- W3040814892 cites W2569219946 @default.
- W3040814892 cites W2582131889 @default.
- W3040814892 cites W2626119717 @default.
- W3040814892 cites W2729646853 @default.
- W3040814892 cites W2737032284 @default.
- W3040814892 cites W2755012395 @default.
- W3040814892 cites W2807304670 @default.
- W3040814892 cites W2809430074 @default.
- W3040814892 cites W2887212924 @default.
- W3040814892 cites W2889049919 @default.
- W3040814892 cites W2892923464 @default.
- W3040814892 cites W2899776028 @default.
- W3040814892 cites W2901421269 @default.
- W3040814892 cites W2905083507 @default.
- W3040814892 cites W2905889700 @default.
- W3040814892 cites W2912392249 @default.
- W3040814892 cites W2934081635 @default.
- W3040814892 cites W2937038955 @default.
- W3040814892 cites W2940596626 @default.
- W3040814892 cites W2944947651 @default.
- W3040814892 cites W2963490933 @default.
- W3040814892 cites W2983417632 @default.
- W3040814892 cites W2986616384 @default.
- W3040814892 cites W2988529604 @default.
- W3040814892 cites W2989576360 @default.
- W3040814892 cites W2990588257 @default.
- W3040814892 cites W2991934524 @default.
- W3040814892 cites W2995855885 @default.
- W3040814892 cites W2997672980 @default.
- W3040814892 cites W2999814743 @default.
- W3040814892 cites W3000021716 @default.
- W3040814892 cites W3001530406 @default.
- W3040814892 cites W3004782679 @default.
- W3040814892 cites W3005095459 @default.
- W3040814892 cites W3019420878 @default.
- W3040814892 cites W3162371293 @default.
- W3040814892 cites W4248220371 @default.
- W3040814892 cites W2793717223 @default.
- W3040814892 doi "https://doi.org/10.1109/access.2020.3007785" @default.
- W3040814892 hasPublicationYear "2020" @default.
- W3040814892 type Work @default.
- W3040814892 sameAs 3040814892 @default.
- W3040814892 citedByCount "20" @default.
- W3040814892 countsByYear W30408148922020 @default.
- W3040814892 countsByYear W30408148922021 @default.
- W3040814892 countsByYear W30408148922022 @default.
- W3040814892 countsByYear W30408148922023 @default.
- W3040814892 crossrefType "journal-article" @default.
- W3040814892 hasAuthorship W3040814892A5009017304 @default.
- W3040814892 hasAuthorship W3040814892A5022832205 @default.
- W3040814892 hasAuthorship W3040814892A5029822464 @default.
- W3040814892 hasAuthorship W3040814892A5037191727 @default.
- W3040814892 hasAuthorship W3040814892A5046079536 @default.
- W3040814892 hasAuthorship W3040814892A5066223731 @default.
- W3040814892 hasBestOaLocation W30408148921 @default.
- W3040814892 hasConcept C111168008 @default.
- W3040814892 hasConcept C114614502 @default.
- W3040814892 hasConcept C119857082 @default.
- W3040814892 hasConcept C12267149 @default.
- W3040814892 hasConcept C153180895 @default.
- W3040814892 hasConcept C154945302 @default.
- W3040814892 hasConcept C33923547 @default.
- W3040814892 hasConcept C41008148 @default.
- W3040814892 hasConcept C50644808 @default.
- W3040814892 hasConcept C58471807 @default.
- W3040814892 hasConcept C73555534 @default.
- W3040814892 hasConcept C74193536 @default.
- W3040814892 hasConcept C85617194 @default.
- W3040814892 hasConcept C8880873 @default.
- W3040814892 hasConceptScore W3040814892C111168008 @default.
- W3040814892 hasConceptScore W3040814892C114614502 @default.
- W3040814892 hasConceptScore W3040814892C119857082 @default.
- W3040814892 hasConceptScore W3040814892C12267149 @default.
- W3040814892 hasConceptScore W3040814892C153180895 @default.
- W3040814892 hasConceptScore W3040814892C154945302 @default.
- W3040814892 hasConceptScore W3040814892C33923547 @default.
- W3040814892 hasConceptScore W3040814892C41008148 @default.
- W3040814892 hasConceptScore W3040814892C50644808 @default.
- W3040814892 hasConceptScore W3040814892C58471807 @default.