Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040819961> ?p ?o ?g. }
- W3040819961 endingPage "118464" @default.
- W3040819961 startingPage "118464" @default.
- W3040819961 abstract "Optimizing the backwashing procedure of ultrafiltration membranes poses novel challenges in regards to the modeling and simulation of the fouling process. Traditional modeling approaches the problem through a physical and chemical understanding of the complicated fouling phenomena. In this study, a large amount of data has been collected from a pilot-scale ultrafiltration membrane system treating spent filter backwash water at a water treatment plant. Environmental variables and operational parameters including temperature, hydraulic pressure, water turbidity, etc. are monitored continuously. This work focuses on revealing the hidden nonlinear relationships of these variables via data driven methodologies without building a first principles process model. Machine learning tools are used to establish a connection between environmental variables, dynamic parameters, the efficiency of foulant removal through backwashing, and the increase rate of foulants. The prediction performance is compared to regression models including linear regression, artificial neural networks, and random forests. Our data driven model of the fouling dynamics is then used for optimization purposes, in particular, to optimize the backwashing sequence timing by applying tools from stochastic dynamic programming. Optimized backwash performance is compared with experimental data acquired via a fixed interval sequence and shows a more efficient schedule at less cost and with lower membrane resistance. This work establishes a full pipeline of data processing, model building, and operational optimization. The only requirement for employing our methodology is the collection of operational data, in order to identify the membrane dynamics. The reported methodology offers a great potential for implementation on large-scale ultrafiltration applications, which can improve energy consumption and elongate membrane life." @default.
- W3040819961 created "2020-07-16" @default.
- W3040819961 creator A5008007911 @default.
- W3040819961 creator A5035417205 @default.
- W3040819961 creator A5042544900 @default.
- W3040819961 creator A5051158466 @default.
- W3040819961 creator A5052705774 @default.
- W3040819961 creator A5068327587 @default.
- W3040819961 creator A5084785050 @default.
- W3040819961 date "2020-10-01" @default.
- W3040819961 modified "2023-10-14" @default.
- W3040819961 title "Backwash sequence optimization of a pilot-scale ultrafiltration membrane system using data-driven modeling for parameter forecasting" @default.
- W3040819961 cites W1982380363 @default.
- W3040819961 cites W2006336452 @default.
- W3040819961 cites W2018914049 @default.
- W3040819961 cites W2027968908 @default.
- W3040819961 cites W2035311561 @default.
- W3040819961 cites W2042779977 @default.
- W3040819961 cites W2047233797 @default.
- W3040819961 cites W2064094462 @default.
- W3040819961 cites W2078165907 @default.
- W3040819961 cites W2083036391 @default.
- W3040819961 cites W2090993806 @default.
- W3040819961 cites W2093103229 @default.
- W3040819961 cites W2126975596 @default.
- W3040819961 cites W2137675101 @default.
- W3040819961 cites W2343355206 @default.
- W3040819961 cites W2499525157 @default.
- W3040819961 cites W2581733798 @default.
- W3040819961 cites W2752846624 @default.
- W3040819961 cites W2756222094 @default.
- W3040819961 cites W2767022259 @default.
- W3040819961 cites W2911964244 @default.
- W3040819961 cites W2913395807 @default.
- W3040819961 cites W2917234733 @default.
- W3040819961 doi "https://doi.org/10.1016/j.memsci.2020.118464" @default.
- W3040819961 hasPublicationYear "2020" @default.
- W3040819961 type Work @default.
- W3040819961 sameAs 3040819961 @default.
- W3040819961 citedByCount "17" @default.
- W3040819961 countsByYear W30408199612021 @default.
- W3040819961 countsByYear W30408199612022 @default.
- W3040819961 countsByYear W30408199612023 @default.
- W3040819961 crossrefType "journal-article" @default.
- W3040819961 hasAuthorship W3040819961A5008007911 @default.
- W3040819961 hasAuthorship W3040819961A5035417205 @default.
- W3040819961 hasAuthorship W3040819961A5042544900 @default.
- W3040819961 hasAuthorship W3040819961A5051158466 @default.
- W3040819961 hasAuthorship W3040819961A5052705774 @default.
- W3040819961 hasAuthorship W3040819961A5068327587 @default.
- W3040819961 hasAuthorship W3040819961A5084785050 @default.
- W3040819961 hasBestOaLocation W30408199611 @default.
- W3040819961 hasConcept C115792997 @default.
- W3040819961 hasConcept C127413603 @default.
- W3040819961 hasConcept C180461467 @default.
- W3040819961 hasConcept C185592680 @default.
- W3040819961 hasConcept C201289731 @default.
- W3040819961 hasConcept C21880701 @default.
- W3040819961 hasConcept C2778909257 @default.
- W3040819961 hasConcept C41008148 @default.
- W3040819961 hasConcept C41625074 @default.
- W3040819961 hasConcept C43617362 @default.
- W3040819961 hasConcept C50817676 @default.
- W3040819961 hasConcept C54355233 @default.
- W3040819961 hasConcept C78519656 @default.
- W3040819961 hasConcept C86803240 @default.
- W3040819961 hasConceptScore W3040819961C115792997 @default.
- W3040819961 hasConceptScore W3040819961C127413603 @default.
- W3040819961 hasConceptScore W3040819961C180461467 @default.
- W3040819961 hasConceptScore W3040819961C185592680 @default.
- W3040819961 hasConceptScore W3040819961C201289731 @default.
- W3040819961 hasConceptScore W3040819961C21880701 @default.
- W3040819961 hasConceptScore W3040819961C2778909257 @default.
- W3040819961 hasConceptScore W3040819961C41008148 @default.
- W3040819961 hasConceptScore W3040819961C41625074 @default.
- W3040819961 hasConceptScore W3040819961C43617362 @default.
- W3040819961 hasConceptScore W3040819961C50817676 @default.
- W3040819961 hasConceptScore W3040819961C54355233 @default.
- W3040819961 hasConceptScore W3040819961C78519656 @default.
- W3040819961 hasConceptScore W3040819961C86803240 @default.
- W3040819961 hasFunder F4320306114 @default.
- W3040819961 hasLocation W30408199611 @default.
- W3040819961 hasOpenAccess W3040819961 @default.
- W3040819961 hasPrimaryLocation W30408199611 @default.
- W3040819961 hasRelatedWork W1981787690 @default.
- W3040819961 hasRelatedWork W2060159494 @default.
- W3040819961 hasRelatedWork W2181604799 @default.
- W3040819961 hasRelatedWork W2322830557 @default.
- W3040819961 hasRelatedWork W2353584239 @default.
- W3040819961 hasRelatedWork W2803110045 @default.
- W3040819961 hasRelatedWork W3025542927 @default.
- W3040819961 hasRelatedWork W3133901361 @default.
- W3040819961 hasRelatedWork W3144035270 @default.
- W3040819961 hasRelatedWork W3145504070 @default.
- W3040819961 hasVolume "612" @default.
- W3040819961 isParatext "false" @default.
- W3040819961 isRetracted "false" @default.
- W3040819961 magId "3040819961" @default.