Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040907557> ?p ?o ?g. }
- W3040907557 endingPage "1867" @default.
- W3040907557 startingPage "1858" @default.
- W3040907557 abstract "Anticancer drug screening can accelerate drug discovery to save the lives of cancer patients, but cancer heterogeneity makes this screening challenging. The prediction of anticancer drug sensitivity is useful for anticancer drug development and the identification of biomarkers of drug sensitivity. Deep learning, as a branch of machine learning, is an important aspect of in silico research. Its outstanding computational performance means that it has been used for many biomedical purposes, such as medical image interpretation, biological sequence analysis, and drug discovery. Several studies have predicted anticancer drug sensitivity based on deep learning algorithms. The field of deep learning has made progress regarding model performance and multi-omics data integration. However, deep learning is limited by the number of studies performed and data sources available, so it is not perfect as a pre-clinical approach for use in the anticancer drug screening process. Improving the performance of deep learning models is a pressing issue for researchers. In this review, we introduce the research of anticancer drug sensitivity prediction and the use of deep learning in this research area. To provide a reference for future research, we also review some common data sources and machine learning methods. Lastly, we discuss the advantages and disadvantages of deep learning, as well as the limitations and future perspectives regarding this approach." @default.
- W3040907557 created "2020-07-16" @default.
- W3040907557 creator A5012519346 @default.
- W3040907557 creator A5017318126 @default.
- W3040907557 creator A5018032174 @default.
- W3040907557 creator A5031397616 @default.
- W3040907557 creator A5058698335 @default.
- W3040907557 creator A5059804886 @default.
- W3040907557 date "2020-09-18" @default.
- W3040907557 modified "2023-10-17" @default.
- W3040907557 title "Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction" @default.
- W3040907557 cites W1741548448 @default.
- W3040907557 cites W1972404374 @default.
- W3040907557 cites W1983578130 @default.
- W3040907557 cites W2009720434 @default.
- W3040907557 cites W2016661249 @default.
- W3040907557 cites W2033757486 @default.
- W3040907557 cites W2043398720 @default.
- W3040907557 cites W2059300459 @default.
- W3040907557 cites W2076063813 @default.
- W3040907557 cites W2077271226 @default.
- W3040907557 cites W2085398335 @default.
- W3040907557 cites W2108068107 @default.
- W3040907557 cites W2109689528 @default.
- W3040907557 cites W2118258530 @default.
- W3040907557 cites W2120204563 @default.
- W3040907557 cites W2122732537 @default.
- W3040907557 cites W2129860849 @default.
- W3040907557 cites W2136079102 @default.
- W3040907557 cites W2139863034 @default.
- W3040907557 cites W2159457208 @default.
- W3040907557 cites W2175970000 @default.
- W3040907557 cites W2290847742 @default.
- W3040907557 cites W2297537563 @default.
- W3040907557 cites W2331260641 @default.
- W3040907557 cites W2344714812 @default.
- W3040907557 cites W2465707019 @default.
- W3040907557 cites W2502949459 @default.
- W3040907557 cites W2507626327 @default.
- W3040907557 cites W2526188806 @default.
- W3040907557 cites W2548096056 @default.
- W3040907557 cites W2551883086 @default.
- W3040907557 cites W2558475804 @default.
- W3040907557 cites W2559588208 @default.
- W3040907557 cites W2569335714 @default.
- W3040907557 cites W2601380465 @default.
- W3040907557 cites W2608863179 @default.
- W3040907557 cites W2617689268 @default.
- W3040907557 cites W2618530766 @default.
- W3040907557 cites W2739254074 @default.
- W3040907557 cites W2761391005 @default.
- W3040907557 cites W2766761250 @default.
- W3040907557 cites W2775061087 @default.
- W3040907557 cites W2805406480 @default.
- W3040907557 cites W2807463161 @default.
- W3040907557 cites W2808263699 @default.
- W3040907557 cites W2820313700 @default.
- W3040907557 cites W2891837572 @default.
- W3040907557 cites W2896725104 @default.
- W3040907557 cites W2900569176 @default.
- W3040907557 cites W2906092989 @default.
- W3040907557 cites W2906480064 @default.
- W3040907557 cites W2911535432 @default.
- W3040907557 cites W2911969472 @default.
- W3040907557 cites W2946707752 @default.
- W3040907557 cites W2946834067 @default.
- W3040907557 cites W2947230856 @default.
- W3040907557 cites W2950063908 @default.
- W3040907557 cites W2960677646 @default.
- W3040907557 cites W2963046727 @default.
- W3040907557 cites W2965750004 @default.
- W3040907557 cites W3106417893 @default.
- W3040907557 doi "https://doi.org/10.2174/1568026620666200710101307" @default.
- W3040907557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32648840" @default.
- W3040907557 hasPublicationYear "2020" @default.
- W3040907557 type Work @default.
- W3040907557 sameAs 3040907557 @default.
- W3040907557 citedByCount "6" @default.
- W3040907557 countsByYear W30409075572021 @default.
- W3040907557 countsByYear W30409075572022 @default.
- W3040907557 countsByYear W30409075572023 @default.
- W3040907557 crossrefType "journal-article" @default.
- W3040907557 hasAuthorship W3040907557A5012519346 @default.
- W3040907557 hasAuthorship W3040907557A5017318126 @default.
- W3040907557 hasAuthorship W3040907557A5018032174 @default.
- W3040907557 hasAuthorship W3040907557A5031397616 @default.
- W3040907557 hasAuthorship W3040907557A5058698335 @default.
- W3040907557 hasAuthorship W3040907557A5059804886 @default.
- W3040907557 hasConcept C104317684 @default.
- W3040907557 hasConcept C108583219 @default.
- W3040907557 hasConcept C119857082 @default.
- W3040907557 hasConcept C142724271 @default.
- W3040907557 hasConcept C154945302 @default.
- W3040907557 hasConcept C163763905 @default.
- W3040907557 hasConcept C185592680 @default.
- W3040907557 hasConcept C2522767166 @default.
- W3040907557 hasConcept C2775905019 @default.
- W3040907557 hasConcept C2780035454 @default.