Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040979892> ?p ?o ?g. }
- W3040979892 endingPage "278" @default.
- W3040979892 startingPage "260" @default.
- W3040979892 abstract "Embodied Conversational Agents (ECAs) are a promising medium for human-computer interaction, since they are capable of engaging users in real-time face-to-face interaction [1, 2]. Users’ formed impressions of an ECA (e.g. favour or dislike) could be reflected behaviourally [3, 4]. These impressions may affect the interaction and could even remain afterwards [5, 7]. Thus, when we build an ECA to impress users, it is important to detect how users feel about the ECA. The impression the ECA leaves can then be adjusted by controlling its non-verbal behaviour [7]. Motivated by the role of ECAs in interpersonal interaction and the state-of-the-art on affect recognition, we investigated three research questions: 1) which modality (facial expressions, eye movements, and physiological signals) reveals most of the formed impressions; 2) whether an ECA could leave a better impression by maximizing the impression it produces; 3) whether there are differences in impression formation during human-human vs. human-agent interaction. Our results firstly showed the interest to use different modalities to detect impressions. An ANOVA test indicated that facial expressions performance outperforms the physiological modality performance (M = 1.27, p = 0.02). Secondly, our results presented the possibility of creating an adaptive ECA. Compared with the randomly selected ECA behaviour, participants’ ratings tended to be higher in the conditions where the ECA adapted its behaviour based on the detected impressions. Thirdly, we found similar behaviour during human-human vs. human-agent interaction. People treated an ECA similarly to a human by spending more time observing the face area when forming an impression." @default.
- W3040979892 created "2020-07-16" @default.
- W3040979892 creator A5000771627 @default.
- W3040979892 creator A5004267627 @default.
- W3040979892 creator A5013038112 @default.
- W3040979892 creator A5047269229 @default.
- W3040979892 creator A5054399837 @default.
- W3040979892 creator A5079026902 @default.
- W3040979892 creator A5089206667 @default.
- W3040979892 date "2020-01-01" @default.
- W3040979892 modified "2023-10-18" @default.
- W3040979892 title "Impression Detection and Management Using an Embodied Conversational Agent" @default.
- W3040979892 cites W1157478223 @default.
- W3040979892 cites W121725841 @default.
- W3040979892 cites W1544543982 @default.
- W3040979892 cites W1605523172 @default.
- W3040979892 cites W1965959405 @default.
- W3040979892 cites W1989538527 @default.
- W3040979892 cites W1990135874 @default.
- W3040979892 cites W2034758915 @default.
- W3040979892 cites W2054810312 @default.
- W3040979892 cites W2079242396 @default.
- W3040979892 cites W2094856020 @default.
- W3040979892 cites W2100698103 @default.
- W3040979892 cites W2108640344 @default.
- W3040979892 cites W2109453861 @default.
- W3040979892 cites W2110719102 @default.
- W3040979892 cites W2150690631 @default.
- W3040979892 cites W2153822685 @default.
- W3040979892 cites W216945601 @default.
- W3040979892 cites W2395639500 @default.
- W3040979892 cites W2470817955 @default.
- W3040979892 cites W2531648894 @default.
- W3040979892 cites W2586899884 @default.
- W3040979892 cites W2755291975 @default.
- W3040979892 cites W2765291577 @default.
- W3040979892 cites W2767244968 @default.
- W3040979892 cites W2901498041 @default.
- W3040979892 cites W2962855548 @default.
- W3040979892 cites W2981434852 @default.
- W3040979892 cites W2993915028 @default.
- W3040979892 cites W3102476541 @default.
- W3040979892 cites W83463411 @default.
- W3040979892 cites W837827503 @default.
- W3040979892 doi "https://doi.org/10.1007/978-3-030-49062-1_18" @default.
- W3040979892 hasPublicationYear "2020" @default.
- W3040979892 type Work @default.
- W3040979892 sameAs 3040979892 @default.
- W3040979892 citedByCount "1" @default.
- W3040979892 countsByYear W30409798922021 @default.
- W3040979892 crossrefType "book-chapter" @default.
- W3040979892 hasAuthorship W3040979892A5000771627 @default.
- W3040979892 hasAuthorship W3040979892A5004267627 @default.
- W3040979892 hasAuthorship W3040979892A5013038112 @default.
- W3040979892 hasAuthorship W3040979892A5047269229 @default.
- W3040979892 hasAuthorship W3040979892A5054399837 @default.
- W3040979892 hasAuthorship W3040979892A5079026902 @default.
- W3040979892 hasAuthorship W3040979892A5089206667 @default.
- W3040979892 hasBestOaLocation W30409798922 @default.
- W3040979892 hasConcept C100609095 @default.
- W3040979892 hasConcept C107457646 @default.
- W3040979892 hasConcept C129484327 @default.
- W3040979892 hasConcept C136764020 @default.
- W3040979892 hasConcept C144024400 @default.
- W3040979892 hasConcept C154945302 @default.
- W3040979892 hasConcept C15744967 @default.
- W3040979892 hasConcept C169760540 @default.
- W3040979892 hasConcept C173853756 @default.
- W3040979892 hasConcept C17822864 @default.
- W3040979892 hasConcept C180747234 @default.
- W3040979892 hasConcept C190954187 @default.
- W3040979892 hasConcept C195704467 @default.
- W3040979892 hasConcept C26760741 @default.
- W3040979892 hasConcept C2776035688 @default.
- W3040979892 hasConcept C2776684213 @default.
- W3040979892 hasConcept C2779903281 @default.
- W3040979892 hasConcept C2780226545 @default.
- W3040979892 hasConcept C36289849 @default.
- W3040979892 hasConcept C41008148 @default.
- W3040979892 hasConcept C46312422 @default.
- W3040979892 hasConcept C4994750 @default.
- W3040979892 hasConcept C77805123 @default.
- W3040979892 hasConceptScore W3040979892C100609095 @default.
- W3040979892 hasConceptScore W3040979892C107457646 @default.
- W3040979892 hasConceptScore W3040979892C129484327 @default.
- W3040979892 hasConceptScore W3040979892C136764020 @default.
- W3040979892 hasConceptScore W3040979892C144024400 @default.
- W3040979892 hasConceptScore W3040979892C154945302 @default.
- W3040979892 hasConceptScore W3040979892C15744967 @default.
- W3040979892 hasConceptScore W3040979892C169760540 @default.
- W3040979892 hasConceptScore W3040979892C173853756 @default.
- W3040979892 hasConceptScore W3040979892C17822864 @default.
- W3040979892 hasConceptScore W3040979892C180747234 @default.
- W3040979892 hasConceptScore W3040979892C190954187 @default.
- W3040979892 hasConceptScore W3040979892C195704467 @default.
- W3040979892 hasConceptScore W3040979892C26760741 @default.
- W3040979892 hasConceptScore W3040979892C2776035688 @default.
- W3040979892 hasConceptScore W3040979892C2776684213 @default.