Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041036203> ?p ?o ?g. }
- W3041036203 endingPage "123286" @default.
- W3041036203 startingPage "123272" @default.
- W3041036203 abstract "The existing atmospheric mass density models (AMDM) would produce considerable errors in orbital prediction for Low Earth Orbit (LEO) satellites. In order to reduce these errors and correct the AMDM, this paper presents methods based on data mining with historical data of two-line element (TLE). Starting from a typical LEO satellite, TIANHUI, two orbital dynamical models are firstly proposed as the simulation environment to generate training data. The historical TLE data are regarded as actual space environment and used to generate application data. Secondly, three data mining methods, Random Forest (RF), Artificial Neural Network (ANN) and Support Vector Machine (SVM), are combined with the training data to investigate their feasibility in recovering the known deviation of AMDM under simulation environment. Training results show that RF displays the best performance and achieves the accuracy of 99.99%, while the other two methods only achieve 86.83% and 71.90% respectively. Thirdly, under the actual space environment, this paper uses new training and application data to research the ability of the three methods in recovering the unknown deviation of the AMDM and improve the accuracy of orbital prediction. Numerical results are evidential to the accuracy of the proposed methods based on data mining. It is concluded that the capabilities of the data mining for correction for the atmospheric model are very promising, with great potential to advance practical applications on on-orbit propagation." @default.
- W3041036203 created "2020-07-16" @default.
- W3041036203 creator A5020039931 @default.
- W3041036203 creator A5026874866 @default.
- W3041036203 creator A5061657570 @default.
- W3041036203 creator A5091898557 @default.
- W3041036203 date "2020-01-01" @default.
- W3041036203 modified "2023-10-14" @default.
- W3041036203 title "Correction of Atmospheric Model Through Data Mining With Historical Data of Two-Line Element" @default.
- W3041036203 cites W1566419178 @default.
- W3041036203 cites W1593114406 @default.
- W3041036203 cites W1980398021 @default.
- W3041036203 cites W1983986477 @default.
- W3041036203 cites W1994008185 @default.
- W3041036203 cites W1997169250 @default.
- W3041036203 cites W1997630426 @default.
- W3041036203 cites W2012943023 @default.
- W3041036203 cites W2056601122 @default.
- W3041036203 cites W2067761782 @default.
- W3041036203 cites W2073128666 @default.
- W3041036203 cites W2106595237 @default.
- W3041036203 cites W2118291219 @default.
- W3041036203 cites W2153028052 @default.
- W3041036203 cites W2329533067 @default.
- W3041036203 cites W2396239035 @default.
- W3041036203 cites W2584997055 @default.
- W3041036203 cites W2587778754 @default.
- W3041036203 cites W2588610658 @default.
- W3041036203 cites W2729289801 @default.
- W3041036203 cites W2755922289 @default.
- W3041036203 cites W2758873788 @default.
- W3041036203 cites W2784198242 @default.
- W3041036203 cites W2795496865 @default.
- W3041036203 cites W2798000029 @default.
- W3041036203 cites W2803124099 @default.
- W3041036203 cites W2905416607 @default.
- W3041036203 cites W2972777955 @default.
- W3041036203 cites W2996522571 @default.
- W3041036203 cites W4301478181 @default.
- W3041036203 cites W4320911988 @default.
- W3041036203 cites W64652325 @default.
- W3041036203 doi "https://doi.org/10.1109/access.2020.3007705" @default.
- W3041036203 hasPublicationYear "2020" @default.
- W3041036203 type Work @default.
- W3041036203 sameAs 3041036203 @default.
- W3041036203 citedByCount "4" @default.
- W3041036203 countsByYear W30410362032022 @default.
- W3041036203 crossrefType "journal-article" @default.
- W3041036203 hasAuthorship W3041036203A5020039931 @default.
- W3041036203 hasAuthorship W3041036203A5026874866 @default.
- W3041036203 hasAuthorship W3041036203A5061657570 @default.
- W3041036203 hasAuthorship W3041036203A5091898557 @default.
- W3041036203 hasBestOaLocation W30410362031 @default.
- W3041036203 hasConcept C119857082 @default.
- W3041036203 hasConcept C12267149 @default.
- W3041036203 hasConcept C124101348 @default.
- W3041036203 hasConcept C127413603 @default.
- W3041036203 hasConcept C146978453 @default.
- W3041036203 hasConcept C154945302 @default.
- W3041036203 hasConcept C169258074 @default.
- W3041036203 hasConcept C19269812 @default.
- W3041036203 hasConcept C198352243 @default.
- W3041036203 hasConcept C2524010 @default.
- W3041036203 hasConcept C33923547 @default.
- W3041036203 hasConcept C41008148 @default.
- W3041036203 hasConcept C50644808 @default.
- W3041036203 hasConcept C67186912 @default.
- W3041036203 hasConcept C77088390 @default.
- W3041036203 hasConceptScore W3041036203C119857082 @default.
- W3041036203 hasConceptScore W3041036203C12267149 @default.
- W3041036203 hasConceptScore W3041036203C124101348 @default.
- W3041036203 hasConceptScore W3041036203C127413603 @default.
- W3041036203 hasConceptScore W3041036203C146978453 @default.
- W3041036203 hasConceptScore W3041036203C154945302 @default.
- W3041036203 hasConceptScore W3041036203C169258074 @default.
- W3041036203 hasConceptScore W3041036203C19269812 @default.
- W3041036203 hasConceptScore W3041036203C198352243 @default.
- W3041036203 hasConceptScore W3041036203C2524010 @default.
- W3041036203 hasConceptScore W3041036203C33923547 @default.
- W3041036203 hasConceptScore W3041036203C41008148 @default.
- W3041036203 hasConceptScore W3041036203C50644808 @default.
- W3041036203 hasConceptScore W3041036203C67186912 @default.
- W3041036203 hasConceptScore W3041036203C77088390 @default.
- W3041036203 hasFunder F4320321001 @default.
- W3041036203 hasLocation W30410362031 @default.
- W3041036203 hasOpenAccess W3041036203 @default.
- W3041036203 hasPrimaryLocation W30410362031 @default.
- W3041036203 hasRelatedWork W1996541855 @default.
- W3041036203 hasRelatedWork W2985924212 @default.
- W3041036203 hasRelatedWork W3195168932 @default.
- W3041036203 hasRelatedWork W3195610867 @default.
- W3041036203 hasRelatedWork W4308191010 @default.
- W3041036203 hasRelatedWork W4321636153 @default.
- W3041036203 hasRelatedWork W4323021782 @default.
- W3041036203 hasRelatedWork W4327511089 @default.
- W3041036203 hasRelatedWork W4377964522 @default.
- W3041036203 hasRelatedWork W4381414210 @default.
- W3041036203 hasVolume "8" @default.