Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041036705> ?p ?o ?g. }
- W3041036705 endingPage "2672" @default.
- W3041036705 startingPage "2654" @default.
- W3041036705 abstract "A correlation-based model order reduction algorithm is developed using support vector machine to model [Formula: see text] emission and break mean effective pressure of a medium-duty diesel engine. The support vector machine–based model order reduction algorithm is used to reduce the number of features of a 34-feature full-order model by evaluating the regression performance of the support vector machine–based model. Then, the support vector machine–based model order reduction algorithm is used to reduce the number of features of the full-order model. Two models for [Formula: see text] emission and break mean effective pressure are developed via model order reduction, one complex model with high accuracy, called high-order model, and the other with an acceptable accuracy and a simple structure, called low-order model. The high-order model has 29 features for [Formula: see text] and 20 features for break mean effective pressure, while the low-order model has nine features for [Formula: see text] and six features for break mean effective pressure. Then, the steady-state low-order model and high-order model are implemented in a nonlinear control-oriented model. To verify the accuracy of nonlinear control-oriented model, a fast response electrochemical [Formula: see text] sensor is used to experimentally study the engine transient [Formula: see text] emissions. The high-order model and low-order model support vector machine models of [Formula: see text] and break mean effective pressure are compared to a conventional artificial neural network with one hidden layer. The results illustrate that the developed support vector machine model has shorter training times (5–14 times faster) and higher accuracy especially for test data compared to the artificial neural network model. A control-oriented model is then developed to predict the dynamic behavior of the system. Finally, the performance of the low-order model and high-order model is evaluated for different rising and falling input transients at four different engine speeds. The transient test results validate the high accuracy of the high-order model and the acceptable accuracy of low-order model for both [Formula: see text] and break mean effective pressure. The high-order model is proposed as an accurate virtual plant while the low-order model is suitable for model-based controller design." @default.
- W3041036705 created "2020-07-16" @default.
- W3041036705 creator A5031268757 @default.
- W3041036705 creator A5044294757 @default.
- W3041036705 creator A5088207785 @default.
- W3041036705 date "2020-07-10" @default.
- W3041036705 modified "2023-09-24" @default.
- W3041036705 title "A correlation-based model order reduction approach for a diesel engine NO<sub>x</sub> and brake mean effective pressure dynamic model using machine learning" @default.
- W3041036705 cites W1493357981 @default.
- W3041036705 cites W1964357740 @default.
- W3041036705 cites W1966980376 @default.
- W3041036705 cites W1974707715 @default.
- W3041036705 cites W1977079054 @default.
- W3041036705 cites W1978439054 @default.
- W3041036705 cites W1980516134 @default.
- W3041036705 cites W1981240940 @default.
- W3041036705 cites W1982705136 @default.
- W3041036705 cites W1996374282 @default.
- W3041036705 cites W1999966997 @default.
- W3041036705 cites W2006881475 @default.
- W3041036705 cites W2013611472 @default.
- W3041036705 cites W2013640190 @default.
- W3041036705 cites W2015002486 @default.
- W3041036705 cites W2025025456 @default.
- W3041036705 cites W2030811966 @default.
- W3041036705 cites W2052524226 @default.
- W3041036705 cites W2056283535 @default.
- W3041036705 cites W2064161746 @default.
- W3041036705 cites W2076294086 @default.
- W3041036705 cites W2076300071 @default.
- W3041036705 cites W2090224109 @default.
- W3041036705 cites W2091444466 @default.
- W3041036705 cites W2094429529 @default.
- W3041036705 cites W2095089989 @default.
- W3041036705 cites W2135437930 @default.
- W3041036705 cites W2135904200 @default.
- W3041036705 cites W2140095548 @default.
- W3041036705 cites W2161690943 @default.
- W3041036705 cites W2295894217 @default.
- W3041036705 cites W2414551815 @default.
- W3041036705 cites W2511545885 @default.
- W3041036705 cites W2514725691 @default.
- W3041036705 cites W2515853956 @default.
- W3041036705 cites W2517964467 @default.
- W3041036705 cites W2530688094 @default.
- W3041036705 cites W2622319554 @default.
- W3041036705 cites W2748696240 @default.
- W3041036705 cites W2766849225 @default.
- W3041036705 cites W2767264989 @default.
- W3041036705 cites W2783939773 @default.
- W3041036705 cites W2795778498 @default.
- W3041036705 cites W2797312554 @default.
- W3041036705 cites W2802499187 @default.
- W3041036705 cites W2804761989 @default.
- W3041036705 cites W2810977803 @default.
- W3041036705 cites W2858536260 @default.
- W3041036705 cites W2884182060 @default.
- W3041036705 cites W2885732175 @default.
- W3041036705 cites W2895181881 @default.
- W3041036705 cites W2913488259 @default.
- W3041036705 cites W2920867625 @default.
- W3041036705 cites W2920903971 @default.
- W3041036705 cites W2934868860 @default.
- W3041036705 cites W2937496838 @default.
- W3041036705 cites W3008939523 @default.
- W3041036705 cites W4239510810 @default.
- W3041036705 cites W4244984555 @default.
- W3041036705 doi "https://doi.org/10.1177/1468087420936949" @default.
- W3041036705 hasPublicationYear "2020" @default.
- W3041036705 type Work @default.
- W3041036705 sameAs 3041036705 @default.
- W3041036705 citedByCount "27" @default.
- W3041036705 countsByYear W30410367052020 @default.
- W3041036705 countsByYear W30410367052021 @default.
- W3041036705 countsByYear W30410367052022 @default.
- W3041036705 countsByYear W30410367052023 @default.
- W3041036705 crossrefType "journal-article" @default.
- W3041036705 hasAuthorship W3041036705A5031268757 @default.
- W3041036705 hasAuthorship W3041036705A5044294757 @default.
- W3041036705 hasAuthorship W3041036705A5088207785 @default.
- W3041036705 hasConcept C111335779 @default.
- W3041036705 hasConcept C11413529 @default.
- W3041036705 hasConcept C119857082 @default.
- W3041036705 hasConcept C121332964 @default.
- W3041036705 hasConcept C12267149 @default.
- W3041036705 hasConcept C127413603 @default.
- W3041036705 hasConcept C128143373 @default.
- W3041036705 hasConcept C14948415 @default.
- W3041036705 hasConcept C154945302 @default.
- W3041036705 hasConcept C158622935 @default.
- W3041036705 hasConcept C171146098 @default.
- W3041036705 hasConcept C2524010 @default.
- W3041036705 hasConcept C25797200 @default.
- W3041036705 hasConcept C2779277453 @default.
- W3041036705 hasConcept C2780804531 @default.
- W3041036705 hasConcept C33923547 @default.
- W3041036705 hasConcept C41008148 @default.
- W3041036705 hasConcept C50644808 @default.