Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041298650> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3041298650 endingPage "2050048" @default.
- W3041298650 startingPage "2050048" @default.
- W3041298650 abstract "Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning." @default.
- W3041298650 created "2020-07-16" @default.
- W3041298650 creator A5059801019 @default.
- W3041298650 date "2020-09-11" @default.
- W3041298650 modified "2023-09-23" @default.
- W3041298650 title "Retinal blood vessels detection for diabetic retinopathy with Ridgelet transform and convolution neural network" @default.
- W3041298650 cites W1832693441 @default.
- W3041298650 cites W1982168774 @default.
- W3041298650 cites W1989786678 @default.
- W3041298650 cites W1993968798 @default.
- W3041298650 cites W2066146532 @default.
- W3041298650 cites W2098085110 @default.
- W3041298650 cites W2132984323 @default.
- W3041298650 cites W2136740129 @default.
- W3041298650 cites W2145757144 @default.
- W3041298650 cites W2166781165 @default.
- W3041298650 cites W2290701356 @default.
- W3041298650 cites W2327793514 @default.
- W3041298650 cites W2413535587 @default.
- W3041298650 cites W2511001480 @default.
- W3041298650 cites W2520503963 @default.
- W3041298650 cites W2529153069 @default.
- W3041298650 cites W2597102615 @default.
- W3041298650 cites W2784102018 @default.
- W3041298650 cites W2891656133 @default.
- W3041298650 cites W2892133319 @default.
- W3041298650 cites W2923054028 @default.
- W3041298650 doi "https://doi.org/10.1142/s0219691320500484" @default.
- W3041298650 hasPublicationYear "2020" @default.
- W3041298650 type Work @default.
- W3041298650 sameAs 3041298650 @default.
- W3041298650 citedByCount "1" @default.
- W3041298650 countsByYear W30412986502022 @default.
- W3041298650 crossrefType "journal-article" @default.
- W3041298650 hasAuthorship W3041298650A5059801019 @default.
- W3041298650 hasConcept C104317675 @default.
- W3041298650 hasConcept C108583219 @default.
- W3041298650 hasConcept C115961682 @default.
- W3041298650 hasConcept C153180895 @default.
- W3041298650 hasConcept C154945302 @default.
- W3041298650 hasConcept C180064427 @default.
- W3041298650 hasConcept C196216189 @default.
- W3041298650 hasConcept C197231052 @default.
- W3041298650 hasConcept C20479862 @default.
- W3041298650 hasConcept C31972630 @default.
- W3041298650 hasConcept C41008148 @default.
- W3041298650 hasConcept C45347329 @default.
- W3041298650 hasConcept C46286280 @default.
- W3041298650 hasConcept C47432892 @default.
- W3041298650 hasConcept C50644808 @default.
- W3041298650 hasConcept C81363708 @default.
- W3041298650 hasConcept C9417928 @default.
- W3041298650 hasConcept C99234102 @default.
- W3041298650 hasConceptScore W3041298650C104317675 @default.
- W3041298650 hasConceptScore W3041298650C108583219 @default.
- W3041298650 hasConceptScore W3041298650C115961682 @default.
- W3041298650 hasConceptScore W3041298650C153180895 @default.
- W3041298650 hasConceptScore W3041298650C154945302 @default.
- W3041298650 hasConceptScore W3041298650C180064427 @default.
- W3041298650 hasConceptScore W3041298650C196216189 @default.
- W3041298650 hasConceptScore W3041298650C197231052 @default.
- W3041298650 hasConceptScore W3041298650C20479862 @default.
- W3041298650 hasConceptScore W3041298650C31972630 @default.
- W3041298650 hasConceptScore W3041298650C41008148 @default.
- W3041298650 hasConceptScore W3041298650C45347329 @default.
- W3041298650 hasConceptScore W3041298650C46286280 @default.
- W3041298650 hasConceptScore W3041298650C47432892 @default.
- W3041298650 hasConceptScore W3041298650C50644808 @default.
- W3041298650 hasConceptScore W3041298650C81363708 @default.
- W3041298650 hasConceptScore W3041298650C9417928 @default.
- W3041298650 hasConceptScore W3041298650C99234102 @default.
- W3041298650 hasIssue "06" @default.
- W3041298650 hasLocation W30412986501 @default.
- W3041298650 hasOpenAccess W3041298650 @default.
- W3041298650 hasPrimaryLocation W30412986501 @default.
- W3041298650 hasRelatedWork W15853131 @default.
- W3041298650 hasRelatedWork W1809875158 @default.
- W3041298650 hasRelatedWork W2004163240 @default.
- W3041298650 hasRelatedWork W2082791968 @default.
- W3041298650 hasRelatedWork W2163073107 @default.
- W3041298650 hasRelatedWork W2186577434 @default.
- W3041298650 hasRelatedWork W2240450848 @default.
- W3041298650 hasRelatedWork W2341676913 @default.
- W3041298650 hasRelatedWork W3041298650 @default.
- W3041298650 hasRelatedWork W3156786002 @default.
- W3041298650 hasVolume "18" @default.
- W3041298650 isParatext "false" @default.
- W3041298650 isRetracted "false" @default.
- W3041298650 magId "3041298650" @default.
- W3041298650 workType "article" @default.