Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041365740> ?p ?o ?g. }
- W3041365740 abstract "Online data can be analyzed for many purposes, including the prediction of stock market, business, and political planning. Online data can also be used to develop systems for the automatic emotion detection and mental health assessment of users. These systems can be used as complementary measures in monitoring online forums by detecting users who are in need of attention.In this thesis, we first present a new approach for contextual emotion detection, i.e. emotion detection in short conversations. The approach is based on a neural feature extractor, composed of a recurrent neural network with an attention mechanism, followed by a final classifier, that can be neural or SVM-based. The results from our experiments showed that, by providing a higher and more robust performance, SVM can act as a better final classifier in comparison to a feed-forward neural network.We then extended our model for emotion detection, and created an ensemble approach for the task of distress detection from online data. This extended approach utilizes several attention-based neural sub-models to extract features and predict class probabilities, which are later used as input features to a Support Vector Machine (SVM) making the final classification. Our experiments show that using an ensemble approach which makes use different sub-models accessing diverse sources of information can improve classification in the absence of a large annotated dataset.The extended model was evaluated on two shared tasks, CLPsych and eRisk 2019, which aim at suicide risk assessment, and early risk detection of anorexia, respectively. The model ranked first in tasks A and C of CLPsych 2019 (with macro-average F1 scores of 0.481 and 0.268, respectively), and ranked first in the first task of eRisk 2019 in terms of F1 and latency-weighted F1 scores (0.71 and 0.69, respectively)." @default.
- W3041365740 created "2020-07-16" @default.
- W3041365740 creator A5016821699 @default.
- W3041365740 date "2019-10-10" @default.
- W3041365740 modified "2023-09-25" @default.
- W3041365740 title "Automatic Detection of Emotions and Distress in Textual Data" @default.
- W3041365740 cites W1133916940 @default.
- W3041365740 cites W1423339008 @default.
- W3041365740 cites W1566376227 @default.
- W3041365740 cites W1632114991 @default.
- W3041365740 cites W2019759670 @default.
- W3041365740 cites W2050730017 @default.
- W3041365740 cites W2064675550 @default.
- W3041365740 cites W2094934653 @default.
- W3041365740 cites W2104518905 @default.
- W3041365740 cites W2119821739 @default.
- W3041365740 cites W2123442489 @default.
- W3041365740 cites W2132339004 @default.
- W3041365740 cites W2133046612 @default.
- W3041365740 cites W2146089916 @default.
- W3041365740 cites W2166183437 @default.
- W3041365740 cites W2250539671 @default.
- W3041365740 cites W2252031683 @default.
- W3041365740 cites W2294703018 @default.
- W3041365740 cites W2323015674 @default.
- W3041365740 cites W2493916176 @default.
- W3041365740 cites W2512306956 @default.
- W3041365740 cites W2575276796 @default.
- W3041365740 cites W2577646479 @default.
- W3041365740 cites W2582664174 @default.
- W3041365740 cites W2595653137 @default.
- W3041365740 cites W2607154244 @default.
- W3041365740 cites W2739681832 @default.
- W3041365740 cites W2741447225 @default.
- W3041365740 cites W2741937156 @default.
- W3041365740 cites W2750747353 @default.
- W3041365740 cites W2758424050 @default.
- W3041365740 cites W2787579701 @default.
- W3041365740 cites W2794557536 @default.
- W3041365740 cites W2805744755 @default.
- W3041365740 cites W2806393999 @default.
- W3041365740 cites W2806752996 @default.
- W3041365740 cites W2807452501 @default.
- W3041365740 cites W2885726350 @default.
- W3041365740 cites W2889497047 @default.
- W3041365740 cites W2892118011 @default.
- W3041365740 cites W2899771611 @default.
- W3041365740 cites W2911964244 @default.
- W3041365740 cites W2919115771 @default.
- W3041365740 cites W2949547296 @default.
- W3041365740 cites W2950577311 @default.
- W3041365740 cites W2953786528 @default.
- W3041365740 cites W2954778211 @default.
- W3041365740 cites W2955429306 @default.
- W3041365740 cites W2962739339 @default.
- W3041365740 cites W2962772361 @default.
- W3041365740 cites W2963341956 @default.
- W3041365740 cites W2963777125 @default.
- W3041365740 cites W2964121744 @default.
- W3041365740 cites W2964308564 @default.
- W3041365740 cites W2966773117 @default.
- W3041365740 cites W2991136969 @default.
- W3041365740 cites W3088524227 @default.
- W3041365740 cites W3089014067 @default.
- W3041365740 cites W3197497981 @default.
- W3041365740 hasPublicationYear "2019" @default.
- W3041365740 type Work @default.
- W3041365740 sameAs 3041365740 @default.
- W3041365740 citedByCount "0" @default.
- W3041365740 crossrefType "dissertation" @default.
- W3041365740 hasAuthorship W3041365740A5016821699 @default.
- W3041365740 hasConcept C119857082 @default.
- W3041365740 hasConcept C12267149 @default.
- W3041365740 hasConcept C124101348 @default.
- W3041365740 hasConcept C154945302 @default.
- W3041365740 hasConcept C2777438025 @default.
- W3041365740 hasConcept C2988148770 @default.
- W3041365740 hasConcept C41008148 @default.
- W3041365740 hasConcept C50644808 @default.
- W3041365740 hasConcept C95623464 @default.
- W3041365740 hasConceptScore W3041365740C119857082 @default.
- W3041365740 hasConceptScore W3041365740C12267149 @default.
- W3041365740 hasConceptScore W3041365740C124101348 @default.
- W3041365740 hasConceptScore W3041365740C154945302 @default.
- W3041365740 hasConceptScore W3041365740C2777438025 @default.
- W3041365740 hasConceptScore W3041365740C2988148770 @default.
- W3041365740 hasConceptScore W3041365740C41008148 @default.
- W3041365740 hasConceptScore W3041365740C50644808 @default.
- W3041365740 hasConceptScore W3041365740C95623464 @default.
- W3041365740 hasLocation W30413657401 @default.
- W3041365740 hasOpenAccess W3041365740 @default.
- W3041365740 hasPrimaryLocation W30413657401 @default.
- W3041365740 hasRelatedWork W1229058197 @default.
- W3041365740 hasRelatedWork W2250725242 @default.
- W3041365740 hasRelatedWork W2408524143 @default.
- W3041365740 hasRelatedWork W2414994497 @default.
- W3041365740 hasRelatedWork W2473239561 @default.
- W3041365740 hasRelatedWork W2612186323 @default.
- W3041365740 hasRelatedWork W2935014430 @default.
- W3041365740 hasRelatedWork W2955300558 @default.