Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041760740> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3041760740 endingPage "131" @default.
- W3041760740 startingPage "121" @default.
- W3041760740 abstract "Background This study aimed to establish and validate a machine learning–based model for the prediction of early phase postoperative hypertension (EPOH) requiring the administration of intravenous vasodilators after carotid endarterectomy (CEA). Methods Perioperative data from consecutive CEA procedures performed from January 2013 to August 2019 were retrospectively collected. EPOH was defined in post-CEA patients as hypertension involving a systolic blood pressure above 160 mm Hg and requiring the administration of any intravenous vasodilator medications in the first 24 hr after a return to the vascular ward. Gradient boosted regression trees were used to construct the predictive model, and the featured importance scores were generated by using each feature's contribution to each tree in the model. To evaluate the model performance, the area under the receiver operating characteristic curve was used as the main metric. Four-fold stratified cross-validation was performed on the data set, and the average performance of the 4 folds was reported as the final model performance. Results A total of 406 CEA operations were performed under general anesthesia. Fifty-three patients (13.1%) met the definition of EPOH. There was no significant difference in the percentage of postoperative stroke/death between patients with and without EPOH during the hospital stay. Patients with EPOH exhibited a higher incidence of postoperative cerebral hyperperfusion syndrome (7.5% vs. 0, P Conclusions We have built the first-ever machine learning–based prediction model for EPOH after CEA. The validation result from our single-center database was very promising. This novel prediction model has the potential to help vascular surgeons identify high-risk patients and reduce related complications more efficiently." @default.
- W3041760740 created "2020-07-16" @default.
- W3041760740 creator A5023008666 @default.
- W3041760740 creator A5034541920 @default.
- W3041760740 creator A5046933385 @default.
- W3041760740 creator A5050229316 @default.
- W3041760740 creator A5056314328 @default.
- W3041760740 creator A5058278821 @default.
- W3041760740 date "2021-02-01" @default.
- W3041760740 modified "2023-09-23" @default.
- W3041760740 title "A Machine Learning Approach for Predicting Early Phase Postoperative Hypertension in Patients Undergoing Carotid Endarterectomy" @default.
- W3041760740 cites W1905667235 @default.
- W3041760740 cites W1972514184 @default.
- W3041760740 cites W1980833571 @default.
- W3041760740 cites W1990874147 @default.
- W3041760740 cites W1999222455 @default.
- W3041760740 cites W2007464138 @default.
- W3041760740 cites W2009372529 @default.
- W3041760740 cites W2031673714 @default.
- W3041760740 cites W2042879710 @default.
- W3041760740 cites W2049537598 @default.
- W3041760740 cites W2065110547 @default.
- W3041760740 cites W2069063073 @default.
- W3041760740 cites W2101176621 @default.
- W3041760740 cites W2115268520 @default.
- W3041760740 cites W2163966323 @default.
- W3041760740 cites W2529606187 @default.
- W3041760740 cites W2530763143 @default.
- W3041760740 cites W2589797300 @default.
- W3041760740 cites W2593880481 @default.
- W3041760740 cites W2745403241 @default.
- W3041760740 cites W2754235967 @default.
- W3041760740 cites W2757739075 @default.
- W3041760740 cites W2786635213 @default.
- W3041760740 cites W2897124762 @default.
- W3041760740 cites W2952312197 @default.
- W3041760740 cites W4250757820 @default.
- W3041760740 doi "https://doi.org/10.1016/j.avsg.2020.07.001" @default.
- W3041760740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32653616" @default.
- W3041760740 hasPublicationYear "2021" @default.
- W3041760740 type Work @default.
- W3041760740 sameAs 3041760740 @default.
- W3041760740 citedByCount "3" @default.
- W3041760740 countsByYear W30417607402022 @default.
- W3041760740 countsByYear W30417607402023 @default.
- W3041760740 crossrefType "journal-article" @default.
- W3041760740 hasAuthorship W3041760740A5023008666 @default.
- W3041760740 hasAuthorship W3041760740A5034541920 @default.
- W3041760740 hasAuthorship W3041760740A5046933385 @default.
- W3041760740 hasAuthorship W3041760740A5050229316 @default.
- W3041760740 hasAuthorship W3041760740A5056314328 @default.
- W3041760740 hasAuthorship W3041760740A5058278821 @default.
- W3041760740 hasConcept C126322002 @default.
- W3041760740 hasConcept C141071460 @default.
- W3041760740 hasConcept C164705383 @default.
- W3041760740 hasConcept C2777010666 @default.
- W3041760740 hasConcept C2778789114 @default.
- W3041760740 hasConcept C2779745121 @default.
- W3041760740 hasConcept C2780120127 @default.
- W3041760740 hasConcept C2781068581 @default.
- W3041760740 hasConcept C2987047532 @default.
- W3041760740 hasConcept C71924100 @default.
- W3041760740 hasConceptScore W3041760740C126322002 @default.
- W3041760740 hasConceptScore W3041760740C141071460 @default.
- W3041760740 hasConceptScore W3041760740C164705383 @default.
- W3041760740 hasConceptScore W3041760740C2777010666 @default.
- W3041760740 hasConceptScore W3041760740C2778789114 @default.
- W3041760740 hasConceptScore W3041760740C2779745121 @default.
- W3041760740 hasConceptScore W3041760740C2780120127 @default.
- W3041760740 hasConceptScore W3041760740C2781068581 @default.
- W3041760740 hasConceptScore W3041760740C2987047532 @default.
- W3041760740 hasConceptScore W3041760740C71924100 @default.
- W3041760740 hasFunder F4320321001 @default.
- W3041760740 hasFunder F4320321885 @default.
- W3041760740 hasLocation W30417607401 @default.
- W3041760740 hasOpenAccess W3041760740 @default.
- W3041760740 hasPrimaryLocation W30417607401 @default.
- W3041760740 hasRelatedWork W2112652378 @default.
- W3041760740 hasRelatedWork W2146656800 @default.
- W3041760740 hasRelatedWork W2350451929 @default.
- W3041760740 hasRelatedWork W2387330792 @default.
- W3041760740 hasRelatedWork W2406071102 @default.
- W3041760740 hasRelatedWork W2414762393 @default.
- W3041760740 hasRelatedWork W2969795456 @default.
- W3041760740 hasRelatedWork W3024328582 @default.
- W3041760740 hasRelatedWork W4230284731 @default.
- W3041760740 hasRelatedWork W4233508391 @default.
- W3041760740 hasVolume "71" @default.
- W3041760740 isParatext "false" @default.
- W3041760740 isRetracted "false" @default.
- W3041760740 magId "3041760740" @default.
- W3041760740 workType "article" @default.