Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041779427> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3041779427 abstract "Sentiment classification typically relies on a large amount of labeled data. In practice, the availability of labels is highly imbalanced among different languages. To tackle this problem, cross-lingual sentiment classification approaches aim to transfer knowledge learned from one language that has abundant labeled examples (i.e., the source language, usually English) to another language with fewer labels (i.e., the target language). The source and the target languages are usually bridged through off-the-shelf machine translation tools. Through such a channel, cross-language sentiment patterns can be successfully learned from English and transferred into the target languages. This approach, however, often fails to capture sentiment knowledge specific to the target language. In this paper, we employ emojis, which are widely available in many languages, as a new channel to learn both the cross-language and the language-specific sentiment patterns. We propose a novel representation learning method that uses emoji prediction as an instrument to learn respective sentiment-aware representations for each language. The learned representations are then integrated to facilitate cross-lingual sentiment classification." @default.
- W3041779427 created "2020-07-16" @default.
- W3041779427 creator A5031457464 @default.
- W3041779427 creator A5048955398 @default.
- W3041779427 creator A5052249316 @default.
- W3041779427 creator A5052404451 @default.
- W3041779427 creator A5060639952 @default.
- W3041779427 creator A5091003789 @default.
- W3041779427 date "2020-07-01" @default.
- W3041779427 modified "2023-09-23" @default.
- W3041779427 title "Emoji-Powered Representation Learning for Cross-Lingual Sentiment Classification (Extended Abstract)" @default.
- W3041779427 doi "https://doi.org/10.24963/ijcai.2020/649" @default.
- W3041779427 hasPublicationYear "2020" @default.
- W3041779427 type Work @default.
- W3041779427 sameAs 3041779427 @default.
- W3041779427 citedByCount "0" @default.
- W3041779427 crossrefType "proceedings-article" @default.
- W3041779427 hasAuthorship W3041779427A5031457464 @default.
- W3041779427 hasAuthorship W3041779427A5048955398 @default.
- W3041779427 hasAuthorship W3041779427A5052249316 @default.
- W3041779427 hasAuthorship W3041779427A5052404451 @default.
- W3041779427 hasAuthorship W3041779427A5060639952 @default.
- W3041779427 hasAuthorship W3041779427A5091003789 @default.
- W3041779427 hasBestOaLocation W30417794271 @default.
- W3041779427 hasConcept C136764020 @default.
- W3041779427 hasConcept C154945302 @default.
- W3041779427 hasConcept C17744445 @default.
- W3041779427 hasConcept C199539241 @default.
- W3041779427 hasConcept C203005215 @default.
- W3041779427 hasConcept C204321447 @default.
- W3041779427 hasConcept C2776359362 @default.
- W3041779427 hasConcept C2779247141 @default.
- W3041779427 hasConcept C41008148 @default.
- W3041779427 hasConcept C518677369 @default.
- W3041779427 hasConcept C66402592 @default.
- W3041779427 hasConcept C94625758 @default.
- W3041779427 hasConceptScore W3041779427C136764020 @default.
- W3041779427 hasConceptScore W3041779427C154945302 @default.
- W3041779427 hasConceptScore W3041779427C17744445 @default.
- W3041779427 hasConceptScore W3041779427C199539241 @default.
- W3041779427 hasConceptScore W3041779427C203005215 @default.
- W3041779427 hasConceptScore W3041779427C204321447 @default.
- W3041779427 hasConceptScore W3041779427C2776359362 @default.
- W3041779427 hasConceptScore W3041779427C2779247141 @default.
- W3041779427 hasConceptScore W3041779427C41008148 @default.
- W3041779427 hasConceptScore W3041779427C518677369 @default.
- W3041779427 hasConceptScore W3041779427C66402592 @default.
- W3041779427 hasConceptScore W3041779427C94625758 @default.
- W3041779427 hasLocation W30417794271 @default.
- W3041779427 hasOpenAccess W3041779427 @default.
- W3041779427 hasPrimaryLocation W30417794271 @default.
- W3041779427 hasRelatedWork W1484029852 @default.
- W3041779427 hasRelatedWork W1512718085 @default.
- W3041779427 hasRelatedWork W1585034923 @default.
- W3041779427 hasRelatedWork W2435130738 @default.
- W3041779427 hasRelatedWork W2747680751 @default.
- W3041779427 hasRelatedWork W2807389917 @default.
- W3041779427 hasRelatedWork W3107474891 @default.
- W3041779427 hasRelatedWork W4301213441 @default.
- W3041779427 hasRelatedWork W4312833533 @default.
- W3041779427 hasRelatedWork W2610387714 @default.
- W3041779427 isParatext "false" @default.
- W3041779427 isRetracted "false" @default.
- W3041779427 magId "3041779427" @default.
- W3041779427 workType "article" @default.