Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041796653> ?p ?o ?g. }
- W3041796653 abstract "Abstract Artificial intelligence is one of the most exciting methodological shifts in our era. It holds the potential to transform healthcare as we know it, to a system where humans and machines work together to provide better treatment for our patients. It is now clear that cutting edge artificial intelligence models in conjunction with high-quality clinical data will lead to improved prognostic and diagnostic models in neurological disease, facilitating expert-level clinical decision tools across healthcare settings. Despite the clinical promise of artificial intelligence, machine and deep-learning algorithms are not a one-size-fits-all solution for all types of clinical data and questions. In this article, we provide an overview of the core concepts of artificial intelligence, particularly contemporary deep-learning methods, to give clinician and neuroscience researchers an appreciation of how artificial intelligence can be harnessed to support clinical decisions. We clarify and emphasize the data quality and the human expertise needed to build robust clinical artificial intelligence models in neurology. As artificial intelligence is a rapidly evolving field, we take the opportunity to iterate important ethical principles to guide the field of medicine is it moves into an artificial intelligence enhanced future." @default.
- W3041796653 created "2020-07-16" @default.
- W3041796653 creator A5004220534 @default.
- W3041796653 creator A5024526307 @default.
- W3041796653 creator A5063847391 @default.
- W3041796653 creator A5066561961 @default.
- W3041796653 creator A5073875594 @default.
- W3041796653 creator A5084069668 @default.
- W3041796653 date "2020-01-01" @default.
- W3041796653 modified "2023-10-11" @default.
- W3041796653 title "Artificial intelligence for clinical decision support in neurology" @default.
- W3041796653 cites W1981976602 @default.
- W3041796653 cites W1993530462 @default.
- W3041796653 cites W2001465365 @default.
- W3041796653 cites W2004091643 @default.
- W3041796653 cites W2036439084 @default.
- W3041796653 cites W2040870580 @default.
- W3041796653 cites W2060427373 @default.
- W3041796653 cites W2072462334 @default.
- W3041796653 cites W2075940122 @default.
- W3041796653 cites W2076063813 @default.
- W3041796653 cites W2076446941 @default.
- W3041796653 cites W2099905829 @default.
- W3041796653 cites W2114607087 @default.
- W3041796653 cites W2116386142 @default.
- W3041796653 cites W2117812871 @default.
- W3041796653 cites W2122328291 @default.
- W3041796653 cites W2141699138 @default.
- W3041796653 cites W2144012133 @default.
- W3041796653 cites W2169428430 @default.
- W3041796653 cites W2213612645 @default.
- W3041796653 cites W2256917630 @default.
- W3041796653 cites W2289846183 @default.
- W3041796653 cites W2312782750 @default.
- W3041796653 cites W2395579298 @default.
- W3041796653 cites W2396699558 @default.
- W3041796653 cites W2525984666 @default.
- W3041796653 cites W2581082771 @default.
- W3041796653 cites W2589086700 @default.
- W3041796653 cites W2610159822 @default.
- W3041796653 cites W2612890464 @default.
- W3041796653 cites W2619383789 @default.
- W3041796653 cites W2620050178 @default.
- W3041796653 cites W2621028221 @default.
- W3041796653 cites W2743606042 @default.
- W3041796653 cites W2759511880 @default.
- W3041796653 cites W2786907498 @default.
- W3041796653 cites W2797694788 @default.
- W3041796653 cites W2887280559 @default.
- W3041796653 cites W2891503716 @default.
- W3041796653 cites W2896817483 @default.
- W3041796653 cites W2898280479 @default.
- W3041796653 cites W2902634493 @default.
- W3041796653 cites W2902644322 @default.
- W3041796653 cites W2908201961 @default.
- W3041796653 cites W2913907987 @default.
- W3041796653 cites W2919115771 @default.
- W3041796653 cites W2946185430 @default.
- W3041796653 cites W2953522645 @default.
- W3041796653 cites W2958189178 @default.
- W3041796653 cites W2963059730 @default.
- W3041796653 cites W2963095307 @default.
- W3041796653 cites W2963431383 @default.
- W3041796653 cites W2963881378 @default.
- W3041796653 cites W2964017656 @default.
- W3041796653 cites W2971685841 @default.
- W3041796653 cites W2979509742 @default.
- W3041796653 cites W2989512989 @default.
- W3041796653 cites W2990879514 @default.
- W3041796653 cites W2998304262 @default.
- W3041796653 cites W3004368638 @default.
- W3041796653 cites W3008345048 @default.
- W3041796653 cites W3008580105 @default.
- W3041796653 cites W3013691153 @default.
- W3041796653 cites W3015161080 @default.
- W3041796653 cites W3016391357 @default.
- W3041796653 cites W3105354225 @default.
- W3041796653 cites W3122425653 @default.
- W3041796653 cites W322832166 @default.
- W3041796653 cites W346782365 @default.
- W3041796653 cites W4239510810 @default.
- W3041796653 cites W4255885670 @default.
- W3041796653 doi "https://doi.org/10.1093/braincomms/fcaa096" @default.
- W3041796653 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7585692" @default.
- W3041796653 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33134913" @default.
- W3041796653 hasPublicationYear "2020" @default.
- W3041796653 type Work @default.
- W3041796653 sameAs 3041796653 @default.
- W3041796653 citedByCount "32" @default.
- W3041796653 countsByYear W30417966532020 @default.
- W3041796653 countsByYear W30417966532021 @default.
- W3041796653 countsByYear W30417966532022 @default.
- W3041796653 countsByYear W30417966532023 @default.
- W3041796653 crossrefType "journal-article" @default.
- W3041796653 hasAuthorship W3041796653A5004220534 @default.
- W3041796653 hasAuthorship W3041796653A5024526307 @default.
- W3041796653 hasAuthorship W3041796653A5063847391 @default.
- W3041796653 hasAuthorship W3041796653A5066561961 @default.
- W3041796653 hasAuthorship W3041796653A5073875594 @default.
- W3041796653 hasAuthorship W3041796653A5084069668 @default.