Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041836696> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3041836696 abstract "In this paper, an adaptive sparse singular value decomposition (ASSVD) algorithm is proposed to estimate the signal matrix when only one data matrix is observed and there is high dimensional white noise, in which we assume that the signal matrix is low-rank and has sparse singular vectors, i.e. it is a simultaneously low-rank and sparse matrix. It is a structured matrix since the non-zero entries are confined on some small blocks. The proposed algorithm estimates the singular values and vectors separable by exploring the structure of singular vectors, in which the recent developments in Random Matrix Theory known as anisotropic Marchenko-Pastur law are used. And then we prove that when the signal is strong in the sense that the signal to noise ratio is above some threshold, our estimator is consistent and outperforms over many state-of-the-art algorithms. Moreover, our estimator is adaptive to the data set and does not require the variance of the noise to be known or estimated. Numerical simulations indicate that ASSVD still works well when the signal matrix is not very sparse." @default.
- W3041836696 created "2020-07-16" @default.
- W3041836696 date "2020-06-30" @default.
- W3041836696 modified "2023-09-24" @default.
- W3041836696 title "ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices" @default.
- W3041836696 doi "https://doi.org/10.3837/tiis.2020.06.017" @default.
- W3041836696 hasPublicationYear "2020" @default.
- W3041836696 type Work @default.
- W3041836696 sameAs 3041836696 @default.
- W3041836696 citedByCount "0" @default.
- W3041836696 crossrefType "journal-article" @default.
- W3041836696 hasBestOaLocation W30418366961 @default.
- W3041836696 hasConcept C109282560 @default.
- W3041836696 hasConcept C11413529 @default.
- W3041836696 hasConcept C121332964 @default.
- W3041836696 hasConcept C124681953 @default.
- W3041836696 hasConcept C158693339 @default.
- W3041836696 hasConcept C18903297 @default.
- W3041836696 hasConcept C22789450 @default.
- W3041836696 hasConcept C28826006 @default.
- W3041836696 hasConcept C33923547 @default.
- W3041836696 hasConcept C41008148 @default.
- W3041836696 hasConcept C62520636 @default.
- W3041836696 hasConcept C86803240 @default.
- W3041836696 hasConceptScore W3041836696C109282560 @default.
- W3041836696 hasConceptScore W3041836696C11413529 @default.
- W3041836696 hasConceptScore W3041836696C121332964 @default.
- W3041836696 hasConceptScore W3041836696C124681953 @default.
- W3041836696 hasConceptScore W3041836696C158693339 @default.
- W3041836696 hasConceptScore W3041836696C18903297 @default.
- W3041836696 hasConceptScore W3041836696C22789450 @default.
- W3041836696 hasConceptScore W3041836696C28826006 @default.
- W3041836696 hasConceptScore W3041836696C33923547 @default.
- W3041836696 hasConceptScore W3041836696C41008148 @default.
- W3041836696 hasConceptScore W3041836696C62520636 @default.
- W3041836696 hasConceptScore W3041836696C86803240 @default.
- W3041836696 hasIssue "6" @default.
- W3041836696 hasLocation W30418366961 @default.
- W3041836696 hasOpenAccess W3041836696 @default.
- W3041836696 hasPrimaryLocation W30418366961 @default.
- W3041836696 hasRelatedWork W2014601410 @default.
- W3041836696 hasRelatedWork W2093203368 @default.
- W3041836696 hasRelatedWork W2113657356 @default.
- W3041836696 hasRelatedWork W2165875392 @default.
- W3041836696 hasRelatedWork W2352463629 @default.
- W3041836696 hasRelatedWork W2374789424 @default.
- W3041836696 hasRelatedWork W2377661241 @default.
- W3041836696 hasRelatedWork W2382748938 @default.
- W3041836696 hasRelatedWork W2386558181 @default.
- W3041836696 hasRelatedWork W2392435277 @default.
- W3041836696 hasVolume "14" @default.
- W3041836696 isParatext "false" @default.
- W3041836696 isRetracted "false" @default.
- W3041836696 magId "3041836696" @default.
- W3041836696 workType "article" @default.