Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041903417> ?p ?o ?g. }
- W3041903417 endingPage "259" @default.
- W3041903417 startingPage "246" @default.
- W3041903417 abstract "Geometric morphometrics is the statistical analysis of landmark-based shape variation and its covariation with other variables. Over the past two decades, the gold standard of landmark data acquisition has been manual detection by a single observer. This approach has proven accurate and reliable in small-scale investigations. However, big data initiatives are increasingly common in biology and morphometrics. This requires fast, automated, and standardized data collection. We combine techniques from image registration, geometric morphometrics, and deep learning to automate and optimize anatomical landmark detection. We test our method on high-resolution, micro-computed tomography images of adult mouse skulls. To ensure generalizability, we use a morphologically diverse sample and implement fundamentally different deformable registration algorithms. Compared to landmarks derived from conventional image registration workflows, our optimized landmark data show up to a 39.1% reduction in average coordinate error and a 36.7% reduction in total distribution error. In addition, our landmark optimization produces estimates of the sample mean shape and variance–covariance structure that are statistically indistinguishable from expert manual estimates. For biological imaging datasets and morphometric research questions, our approach can eliminate the time and subjectivity of manual landmark detection whilst retaining the biological integrity of these expert annotations." @default.
- W3041903417 created "2020-07-16" @default.
- W3041903417 creator A5002984390 @default.
- W3041903417 creator A5012582399 @default.
- W3041903417 creator A5017527161 @default.
- W3041903417 creator A5023886356 @default.
- W3041903417 creator A5028562796 @default.
- W3041903417 creator A5040728822 @default.
- W3041903417 creator A5057661446 @default.
- W3041903417 creator A5071037763 @default.
- W3041903417 date "2020-07-09" @default.
- W3041903417 modified "2023-10-11" @default.
- W3041903417 title "A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics" @default.
- W3041903417 cites W1943743677 @default.
- W3041903417 cites W1951724000 @default.
- W3041903417 cites W1977021803 @default.
- W3041903417 cites W1985586071 @default.
- W3041903417 cites W1992265439 @default.
- W3041903417 cites W1993175280 @default.
- W3041903417 cites W1995980194 @default.
- W3041903417 cites W2014022579 @default.
- W3041903417 cites W2018662705 @default.
- W3041903417 cites W2025349319 @default.
- W3041903417 cites W2031968745 @default.
- W3041903417 cites W2032618685 @default.
- W3041903417 cites W2033477461 @default.
- W3041903417 cites W2035419215 @default.
- W3041903417 cites W2036528696 @default.
- W3041903417 cites W2045125201 @default.
- W3041903417 cites W2048238973 @default.
- W3041903417 cites W2091804476 @default.
- W3041903417 cites W2102099319 @default.
- W3041903417 cites W2112759033 @default.
- W3041903417 cites W2113416428 @default.
- W3041903417 cites W2113576511 @default.
- W3041903417 cites W2115167851 @default.
- W3041903417 cites W2120575449 @default.
- W3041903417 cites W2126971209 @default.
- W3041903417 cites W2127376164 @default.
- W3041903417 cites W2128409098 @default.
- W3041903417 cites W2132661331 @default.
- W3041903417 cites W2136145485 @default.
- W3041903417 cites W2139053629 @default.
- W3041903417 cites W2139685257 @default.
- W3041903417 cites W2143322413 @default.
- W3041903417 cites W2143895814 @default.
- W3041903417 cites W2148157540 @default.
- W3041903417 cites W2157150618 @default.
- W3041903417 cites W2165699430 @default.
- W3041903417 cites W2169969278 @default.
- W3041903417 cites W2171074980 @default.
- W3041903417 cites W2185236575 @default.
- W3041903417 cites W2224335487 @default.
- W3041903417 cites W2277706272 @default.
- W3041903417 cites W2507089309 @default.
- W3041903417 cites W2574764964 @default.
- W3041903417 cites W2604243177 @default.
- W3041903417 cites W2733149489 @default.
- W3041903417 cites W2799536673 @default.
- W3041903417 cites W2801128564 @default.
- W3041903417 cites W2804486271 @default.
- W3041903417 cites W2895486342 @default.
- W3041903417 cites W2946359821 @default.
- W3041903417 cites W2953311082 @default.
- W3041903417 cites W2954669532 @default.
- W3041903417 cites W63727357 @default.
- W3041903417 cites W71438045 @default.
- W3041903417 doi "https://doi.org/10.1007/s11692-020-09508-8" @default.
- W3041903417 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7880197" @default.
- W3041903417 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33583965" @default.
- W3041903417 hasPublicationYear "2020" @default.
- W3041903417 type Work @default.
- W3041903417 sameAs 3041903417 @default.
- W3041903417 citedByCount "28" @default.
- W3041903417 countsByYear W30419034172020 @default.
- W3041903417 countsByYear W30419034172021 @default.
- W3041903417 countsByYear W30419034172022 @default.
- W3041903417 countsByYear W30419034172023 @default.
- W3041903417 crossrefType "journal-article" @default.
- W3041903417 hasAuthorship W3041903417A5002984390 @default.
- W3041903417 hasAuthorship W3041903417A5012582399 @default.
- W3041903417 hasAuthorship W3041903417A5017527161 @default.
- W3041903417 hasAuthorship W3041903417A5023886356 @default.
- W3041903417 hasAuthorship W3041903417A5028562796 @default.
- W3041903417 hasAuthorship W3041903417A5040728822 @default.
- W3041903417 hasAuthorship W3041903417A5057661446 @default.
- W3041903417 hasAuthorship W3041903417A5071037763 @default.
- W3041903417 hasBestOaLocation W30419034172 @default.
- W3041903417 hasConcept C115961682 @default.
- W3041903417 hasConcept C153180895 @default.
- W3041903417 hasConcept C154945302 @default.
- W3041903417 hasConcept C166704113 @default.
- W3041903417 hasConcept C2780297707 @default.
- W3041903417 hasConcept C31972630 @default.
- W3041903417 hasConcept C33511622 @default.
- W3041903417 hasConcept C41008148 @default.
- W3041903417 hasConcept C505870484 @default.
- W3041903417 hasConcept C86803240 @default.