Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041944906> ?p ?o ?g. }
- W3041944906 endingPage "115956" @default.
- W3041944906 startingPage "115956" @default.
- W3041944906 abstract "Deep learning methods, especially the RNN based approaches, have been applied to the industrial time-series modeling these years successfully. However, the RNN based methods cannot overcome the enormous amount of iterative calculation. Traditional CNN based methods can calculate much faster; however, the CNN based methods lack in the explanation of the variables. In this paper, we proposed a novel adapted receptive field temporal convolution networks integrating regularly updated multi-region operations based on principal component analysis (PIMRO-ARFTCN). First, the principal component analysis (PCA) method is used to select the most concerned variables. Then, the Levenshtein distance based hierarchical clustering method is used to extract the multi-region operating features in the variables, and the related variables are used as additional input samples. The adapted receptive field decides the primary input samples. Last, the temporal convolution network structure is used to obtain the final results, and the multi-region operations can be regularly updated with various working situations. The proposed regularly updated PIMRO-ARFTCN method can not only take the most useful human experience into consideration but also combine the advantages of both RNN and CNN. The causal relationship between variables and the calculation speed are both considered. The prediction error of the proposed method is 0.1979, and the remaining errors of the other techniques, the MRO-ARFTCN method, the LSTM method, and the traditional RNN method, are 0.2464, 0.2829, and 0.4168, respectively. Compared with other means, the proposed method shows better prediction performance in time-series modeling." @default.
- W3041944906 created "2020-07-16" @default.
- W3041944906 creator A5012270936 @default.
- W3041944906 creator A5034732631 @default.
- W3041944906 creator A5037028903 @default.
- W3041944906 date "2020-12-01" @default.
- W3041944906 modified "2023-10-12" @default.
- W3041944906 title "Industrial time-series modeling via adapted receptive field temporal convolution networks integrating regularly updated multi-region operations based on PCA" @default.
- W3041944906 cites W1982348007 @default.
- W3041944906 cites W1984672166 @default.
- W3041944906 cites W1995645617 @default.
- W3041944906 cites W2009203913 @default.
- W3041944906 cites W2020657476 @default.
- W3041944906 cites W2034099719 @default.
- W3041944906 cites W2034900645 @default.
- W3041944906 cites W2052398345 @default.
- W3041944906 cites W2060158919 @default.
- W3041944906 cites W2065682613 @default.
- W3041944906 cites W2076063813 @default.
- W3041944906 cites W2107071461 @default.
- W3041944906 cites W2170623158 @default.
- W3041944906 cites W2172198266 @default.
- W3041944906 cites W2322020277 @default.
- W3041944906 cites W2462044331 @default.
- W3041944906 cites W2808885824 @default.
- W3041944906 cites W2891838569 @default.
- W3041944906 cites W2954710255 @default.
- W3041944906 cites W2959689329 @default.
- W3041944906 cites W2963131120 @default.
- W3041944906 cites W2963175197 @default.
- W3041944906 cites W2985102454 @default.
- W3041944906 cites W2998056598 @default.
- W3041944906 cites W3103720336 @default.
- W3041944906 cites W839407891 @default.
- W3041944906 doi "https://doi.org/10.1016/j.ces.2020.115956" @default.
- W3041944906 hasPublicationYear "2020" @default.
- W3041944906 type Work @default.
- W3041944906 sameAs 3041944906 @default.
- W3041944906 citedByCount "11" @default.
- W3041944906 countsByYear W30419449062020 @default.
- W3041944906 countsByYear W30419449062021 @default.
- W3041944906 countsByYear W30419449062022 @default.
- W3041944906 countsByYear W30419449062023 @default.
- W3041944906 crossrefType "journal-article" @default.
- W3041944906 hasAuthorship W3041944906A5012270936 @default.
- W3041944906 hasAuthorship W3041944906A5034732631 @default.
- W3041944906 hasAuthorship W3041944906A5037028903 @default.
- W3041944906 hasConcept C11413529 @default.
- W3041944906 hasConcept C119857082 @default.
- W3041944906 hasConcept C143724316 @default.
- W3041944906 hasConcept C147168706 @default.
- W3041944906 hasConcept C151730666 @default.
- W3041944906 hasConcept C153180895 @default.
- W3041944906 hasConcept C154945302 @default.
- W3041944906 hasConcept C202444582 @default.
- W3041944906 hasConcept C27438332 @default.
- W3041944906 hasConcept C33923547 @default.
- W3041944906 hasConcept C41008148 @default.
- W3041944906 hasConcept C45347329 @default.
- W3041944906 hasConcept C50644808 @default.
- W3041944906 hasConcept C51432778 @default.
- W3041944906 hasConcept C73555534 @default.
- W3041944906 hasConcept C86803240 @default.
- W3041944906 hasConcept C9652623 @default.
- W3041944906 hasConceptScore W3041944906C11413529 @default.
- W3041944906 hasConceptScore W3041944906C119857082 @default.
- W3041944906 hasConceptScore W3041944906C143724316 @default.
- W3041944906 hasConceptScore W3041944906C147168706 @default.
- W3041944906 hasConceptScore W3041944906C151730666 @default.
- W3041944906 hasConceptScore W3041944906C153180895 @default.
- W3041944906 hasConceptScore W3041944906C154945302 @default.
- W3041944906 hasConceptScore W3041944906C202444582 @default.
- W3041944906 hasConceptScore W3041944906C27438332 @default.
- W3041944906 hasConceptScore W3041944906C33923547 @default.
- W3041944906 hasConceptScore W3041944906C41008148 @default.
- W3041944906 hasConceptScore W3041944906C45347329 @default.
- W3041944906 hasConceptScore W3041944906C50644808 @default.
- W3041944906 hasConceptScore W3041944906C51432778 @default.
- W3041944906 hasConceptScore W3041944906C73555534 @default.
- W3041944906 hasConceptScore W3041944906C86803240 @default.
- W3041944906 hasConceptScore W3041944906C9652623 @default.
- W3041944906 hasLocation W30419449061 @default.
- W3041944906 hasOpenAccess W3041944906 @default.
- W3041944906 hasPrimaryLocation W30419449061 @default.
- W3041944906 hasRelatedWork W1720164552 @default.
- W3041944906 hasRelatedWork W2046761971 @default.
- W3041944906 hasRelatedWork W2087137779 @default.
- W3041944906 hasRelatedWork W2089650474 @default.
- W3041944906 hasRelatedWork W2121429698 @default.
- W3041944906 hasRelatedWork W2364896863 @default.
- W3041944906 hasRelatedWork W2389189059 @default.
- W3041944906 hasRelatedWork W2978270519 @default.
- W3041944906 hasRelatedWork W55679925 @default.
- W3041944906 hasRelatedWork W2182042810 @default.
- W3041944906 hasVolume "228" @default.
- W3041944906 isParatext "false" @default.
- W3041944906 isRetracted "false" @default.
- W3041944906 magId "3041944906" @default.