Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041956866> ?p ?o ?g. }
- W3041956866 endingPage "e0235231" @default.
- W3041956866 startingPage "e0235231" @default.
- W3041956866 abstract "We aimed to build a machine learning predictive model to predict the risk of prolonged mechanical ventilation (PMV) for patients with Traumatic Brain Injury (TBI).This study included TBI patients who were hospitalized in a level 1 trauma center between January 2014 and February 2019. Data were analyzed for all adult patients who received mechanical ventilation following TBI with abbreviated injury severity (AIS) score for the head region of ≥ 3. This study designed three sets of machine learning models: set A defined PMV to be greater than 7 days, set B (PMV > 10 days) and set C (PMV >14 days) to determine the optimal model for deployment. Patients' demographics, injury characteristics and CT findings were used as predictors. Logistic regression (LR), Artificial neural networks (ANN) Support vector machines (SVM), Random Forest (RF) and C.5 Decision Tree (C.5 DT) were used to predict the PMV.The number of eligible patients that were included in the study were 674, 643 and 622 patients in sets A, B and C respectively. In set A, LR achieved the optimal performance with accuracy 0.75 and Area under the curve (AUC) 0.83. SVM achieved the optimal performance among other models in sets B with accuracy/AUC of 0.79/0.84 respectively. ANNs achieved the optimal performance in set C with accuracy/AUC of 0.76/0.72 respectively. Machine learning models in set B demonstrated more stable performance with higher prediction success and discrimination power.This study not only provides evidence that machine learning methods outperform the traditional multivariate analytical methods, but also provides a perspective to reach a consensual definition of PMV." @default.
- W3041956866 created "2020-07-16" @default.
- W3041956866 creator A5018246907 @default.
- W3041956866 creator A5025560857 @default.
- W3041956866 creator A5032924875 @default.
- W3041956866 creator A5040368019 @default.
- W3041956866 creator A5054890158 @default.
- W3041956866 creator A5076433839 @default.
- W3041956866 date "2020-07-08" @default.
- W3041956866 modified "2023-10-13" @default.
- W3041956866 title "Using trauma registry data to predict prolonged mechanical ventilation in patients with traumatic brain injury: Machine learning approach" @default.
- W3041956866 cites W1488411822 @default.
- W3041956866 cites W1974438281 @default.
- W3041956866 cites W1978799565 @default.
- W3041956866 cites W1986291503 @default.
- W3041956866 cites W1989471045 @default.
- W3041956866 cites W1989934341 @default.
- W3041956866 cites W1996031526 @default.
- W3041956866 cites W1996279818 @default.
- W3041956866 cites W2003829909 @default.
- W3041956866 cites W2031865625 @default.
- W3041956866 cites W2034896934 @default.
- W3041956866 cites W2047579105 @default.
- W3041956866 cites W2054347672 @default.
- W3041956866 cites W2058074256 @default.
- W3041956866 cites W2062327003 @default.
- W3041956866 cites W2062857750 @default.
- W3041956866 cites W2104441823 @default.
- W3041956866 cites W2105857214 @default.
- W3041956866 cites W2113884631 @default.
- W3041956866 cites W2114262384 @default.
- W3041956866 cites W2131070567 @default.
- W3041956866 cites W2132996843 @default.
- W3041956866 cites W2137621080 @default.
- W3041956866 cites W2140066904 @default.
- W3041956866 cites W2142104245 @default.
- W3041956866 cites W2168613836 @default.
- W3041956866 cites W2174429140 @default.
- W3041956866 cites W2243124155 @default.
- W3041956866 cites W2262790950 @default.
- W3041956866 cites W2340243368 @default.
- W3041956866 cites W2463638724 @default.
- W3041956866 cites W2497003251 @default.
- W3041956866 cites W2533088686 @default.
- W3041956866 cites W2548125779 @default.
- W3041956866 cites W2559877801 @default.
- W3041956866 cites W2586821431 @default.
- W3041956866 cites W2609474397 @default.
- W3041956866 cites W2772939535 @default.
- W3041956866 cites W2774755915 @default.
- W3041956866 cites W2778240925 @default.
- W3041956866 cites W2791727074 @default.
- W3041956866 cites W2792517756 @default.
- W3041956866 cites W2795289605 @default.
- W3041956866 cites W2797010621 @default.
- W3041956866 cites W2806581216 @default.
- W3041956866 cites W2886166995 @default.
- W3041956866 cites W2887629866 @default.
- W3041956866 cites W2895322304 @default.
- W3041956866 cites W2897056982 @default.
- W3041956866 cites W2900166205 @default.
- W3041956866 cites W2900530244 @default.
- W3041956866 cites W2908831392 @default.
- W3041956866 cites W2996406796 @default.
- W3041956866 doi "https://doi.org/10.1371/journal.pone.0235231" @default.
- W3041956866 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7343348" @default.
- W3041956866 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32639971" @default.
- W3041956866 hasPublicationYear "2020" @default.
- W3041956866 type Work @default.
- W3041956866 sameAs 3041956866 @default.
- W3041956866 citedByCount "17" @default.
- W3041956866 countsByYear W30419568662020 @default.
- W3041956866 countsByYear W30419568662021 @default.
- W3041956866 countsByYear W30419568662022 @default.
- W3041956866 countsByYear W30419568662023 @default.
- W3041956866 crossrefType "journal-article" @default.
- W3041956866 hasAuthorship W3041956866A5018246907 @default.
- W3041956866 hasAuthorship W3041956866A5025560857 @default.
- W3041956866 hasAuthorship W3041956866A5032924875 @default.
- W3041956866 hasAuthorship W3041956866A5040368019 @default.
- W3041956866 hasAuthorship W3041956866A5054890158 @default.
- W3041956866 hasAuthorship W3041956866A5076433839 @default.
- W3041956866 hasBestOaLocation W30419568661 @default.
- W3041956866 hasConcept C118552586 @default.
- W3041956866 hasConcept C119857082 @default.
- W3041956866 hasConcept C12267149 @default.
- W3041956866 hasConcept C126322002 @default.
- W3041956866 hasConcept C151956035 @default.
- W3041956866 hasConcept C154945302 @default.
- W3041956866 hasConcept C169258074 @default.
- W3041956866 hasConcept C194828623 @default.
- W3041956866 hasConcept C2777080012 @default.
- W3041956866 hasConcept C2777120189 @default.
- W3041956866 hasConcept C2781017439 @default.
- W3041956866 hasConcept C41008148 @default.
- W3041956866 hasConcept C50644808 @default.
- W3041956866 hasConcept C71924100 @default.
- W3041956866 hasConcept C84525736 @default.