Matches in SemOpenAlex for { <https://semopenalex.org/work/W3041983853> ?p ?o ?g. }
- W3041983853 endingPage "9538" @default.
- W3041983853 startingPage "9531" @default.
- W3041983853 abstract "In order to explore the application value of deep learning denoising autoencoder (DAE) in Internet-of-Things (IoT) fusion security, in this study, a hierarchical intrusion security detection model stacked DAE supporting vector machine (SDAE-SVM) is constructed based on the three-layer neural network of self-encoder. The sample data after dimension reduction are obtained by layer by layer pretraining and fine-tuning. The traditional deep learning algorithms [stacked noise autoencoder (SNAE), stacked autoencoder (SAE), stacked contractive autoencoder (SCAE), stacked sparse autoencoder (SSAE), deep belief network (DBN)] are introduced to carry out the comparative simulation with the model in this study. The results show that when the encoder in the model is a 4-layer network structure, the accuracy rate (Ac) of the model is the highest (97.83%), the false-negative rate (Fn) (1.27%) and the false-positive rate (Fp) (3.21%) are the lowest. When the number of nodes in the first hidden layer is about 110, the model accuracy is about 98%. When comparing the model designed in this study with the common feature dimension reduction methods, the Ac, Fn, and Fp of this model are the best, which are 98.12%, 3.21%, and 1.27%, respectively. When compared with other deep learning algorithms of the same type, the recognition rate, Ac, error rate, and rejection rate show good results. In multiple data sets, the recognition rate, Ac, error rate, and rejection rate of the model in this study are always better than the traditional deep learning algorithms. In conclusion, when deep learning SDAE is applied to IoT convergence-based intrusion security detection, the detection load can be reduced, the detection effect can be improved, and the operation is more secure and stable." @default.
- W3041983853 created "2020-07-16" @default.
- W3041983853 creator A5017970397 @default.
- W3041983853 creator A5042920800 @default.
- W3041983853 creator A5079301418 @default.
- W3041983853 creator A5089407824 @default.
- W3041983853 date "2021-06-15" @default.
- W3041983853 modified "2023-10-10" @default.
- W3041983853 title "Deep-Learning-Enabled Security Issues in the Internet of Things" @default.
- W3041983853 cites W2527484278 @default.
- W3041983853 cites W2563686712 @default.
- W3041983853 cites W2752386676 @default.
- W3041983853 cites W2760684663 @default.
- W3041983853 cites W2785177491 @default.
- W3041983853 cites W2790979755 @default.
- W3041983853 cites W2791777778 @default.
- W3041983853 cites W2793695278 @default.
- W3041983853 cites W2794341265 @default.
- W3041983853 cites W2799399089 @default.
- W3041983853 cites W2801778295 @default.
- W3041983853 cites W2802048969 @default.
- W3041983853 cites W2807587597 @default.
- W3041983853 cites W2810554592 @default.
- W3041983853 cites W2890830077 @default.
- W3041983853 cites W2894423278 @default.
- W3041983853 cites W2897746180 @default.
- W3041983853 cites W2900078434 @default.
- W3041983853 cites W2912645199 @default.
- W3041983853 cites W2917681711 @default.
- W3041983853 cites W2943251214 @default.
- W3041983853 cites W2945566856 @default.
- W3041983853 cites W2946020594 @default.
- W3041983853 cites W2946342495 @default.
- W3041983853 cites W2962732150 @default.
- W3041983853 cites W2963881378 @default.
- W3041983853 cites W2969947869 @default.
- W3041983853 cites W2971432438 @default.
- W3041983853 cites W2971978647 @default.
- W3041983853 cites W2972609628 @default.
- W3041983853 cites W2977354825 @default.
- W3041983853 cites W2991034715 @default.
- W3041983853 cites W3011028810 @default.
- W3041983853 cites W3102535235 @default.
- W3041983853 doi "https://doi.org/10.1109/jiot.2020.3007130" @default.
- W3041983853 hasPublicationYear "2021" @default.
- W3041983853 type Work @default.
- W3041983853 sameAs 3041983853 @default.
- W3041983853 citedByCount "90" @default.
- W3041983853 countsByYear W30419838532020 @default.
- W3041983853 countsByYear W30419838532021 @default.
- W3041983853 countsByYear W30419838532022 @default.
- W3041983853 countsByYear W30419838532023 @default.
- W3041983853 crossrefType "journal-article" @default.
- W3041983853 hasAuthorship W3041983853A5017970397 @default.
- W3041983853 hasAuthorship W3041983853A5042920800 @default.
- W3041983853 hasAuthorship W3041983853A5079301418 @default.
- W3041983853 hasAuthorship W3041983853A5089407824 @default.
- W3041983853 hasConcept C101738243 @default.
- W3041983853 hasConcept C108583219 @default.
- W3041983853 hasConcept C111919701 @default.
- W3041983853 hasConcept C118505674 @default.
- W3041983853 hasConcept C119857082 @default.
- W3041983853 hasConcept C153180895 @default.
- W3041983853 hasConcept C154945302 @default.
- W3041983853 hasConcept C163294075 @default.
- W3041983853 hasConcept C35525427 @default.
- W3041983853 hasConcept C40969351 @default.
- W3041983853 hasConcept C41008148 @default.
- W3041983853 hasConcept C50644808 @default.
- W3041983853 hasConcept C97385483 @default.
- W3041983853 hasConceptScore W3041983853C101738243 @default.
- W3041983853 hasConceptScore W3041983853C108583219 @default.
- W3041983853 hasConceptScore W3041983853C111919701 @default.
- W3041983853 hasConceptScore W3041983853C118505674 @default.
- W3041983853 hasConceptScore W3041983853C119857082 @default.
- W3041983853 hasConceptScore W3041983853C153180895 @default.
- W3041983853 hasConceptScore W3041983853C154945302 @default.
- W3041983853 hasConceptScore W3041983853C163294075 @default.
- W3041983853 hasConceptScore W3041983853C35525427 @default.
- W3041983853 hasConceptScore W3041983853C40969351 @default.
- W3041983853 hasConceptScore W3041983853C41008148 @default.
- W3041983853 hasConceptScore W3041983853C50644808 @default.
- W3041983853 hasConceptScore W3041983853C97385483 @default.
- W3041983853 hasFunder F4320321001 @default.
- W3041983853 hasIssue "12" @default.
- W3041983853 hasLocation W30419838531 @default.
- W3041983853 hasOpenAccess W3041983853 @default.
- W3041983853 hasPrimaryLocation W30419838531 @default.
- W3041983853 hasRelatedWork W1501213224 @default.
- W3041983853 hasRelatedWork W2669956259 @default.
- W3041983853 hasRelatedWork W2795261237 @default.
- W3041983853 hasRelatedWork W3041983853 @default.
- W3041983853 hasRelatedWork W3120593623 @default.
- W3041983853 hasRelatedWork W3123344745 @default.
- W3041983853 hasRelatedWork W4210841218 @default.
- W3041983853 hasRelatedWork W4302303815 @default.
- W3041983853 hasRelatedWork W4312200629 @default.
- W3041983853 hasRelatedWork W4327774331 @default.