Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042045210> ?p ?o ?g. }
- W3042045210 endingPage "106628" @default.
- W3042045210 startingPage "106628" @default.
- W3042045210 abstract "Developing intelligent analytical tools requires pre-processing data and finding relevant features that best reinforce the performance of the predictive algorithms. Feature selection plays a significant role in maximizing the accuracy of machine learning algorithms since the presence of redundant and irrelevant attributes deteriorates the performance of the learning process and increases its complexity. Feature selection is a combinatorial optimization problem that can be formulated as a multi-objective optimization problem with the purpose of maximizing the classification performance and minimizing the number of irrelevant features. It is considered an NP hard optimization problem since having a number of (n) features produces a large search space of size (2n) of different permutations of features. An eminent type of optimizer for tackling such an exhausting search process is evolutionary, which mimic evolutionary processes in nature to solve problems in computers. Salp Swarm Algorithm (SSA) is a well-established metaheuristic that was inspired by the foraging behavior of salps in deep oceans and has proved to be beneficial in estimating global optima for optimization problems. The objective of this article is to promote and boost the performance of the multi-objective SSA for feature selection. Therefore, it proposes an enhanced multi-objective SSA algorithm (MODSSA-lbest) that adopts two essential components: the dynamic time-varying strategy and local fittest solutions. These components assist the SSA algorithm in balancing exploration and exploitation. Thus, it converges faster while avoiding locally optimal solutions. The proposed approach (MODSSA-lbest) is tested on 13 benchmark datasets and compared with the well-regarded Multi-Objective Evolutionary Algorithms (MOEAs). The results show that the MODSSA-lbest achieves significantly promising results versus its counterpart algorithms." @default.
- W3042045210 created "2020-07-16" @default.
- W3042045210 creator A5020371301 @default.
- W3042045210 creator A5023882029 @default.
- W3042045210 creator A5028441474 @default.
- W3042045210 creator A5035499884 @default.
- W3042045210 creator A5048560390 @default.
- W3042045210 creator A5088658340 @default.
- W3042045210 creator A5089232820 @default.
- W3042045210 creator A5091500375 @default.
- W3042045210 date "2020-09-01" @default.
- W3042045210 modified "2023-09-28" @default.
- W3042045210 title "A dynamic locality multi-objective salp swarm algorithm for feature selection" @default.
- W3042045210 cites W1158789509 @default.
- W3042045210 cites W1418108976 @default.
- W3042045210 cites W1502251266 @default.
- W3042045210 cites W1970032027 @default.
- W3042045210 cites W1980053379 @default.
- W3042045210 cites W2000621750 @default.
- W3042045210 cites W2001979953 @default.
- W3042045210 cites W2013885787 @default.
- W3042045210 cites W2022894675 @default.
- W3042045210 cites W2028136593 @default.
- W3042045210 cites W2053410046 @default.
- W3042045210 cites W2061438946 @default.
- W3042045210 cites W2063910191 @default.
- W3042045210 cites W2069928051 @default.
- W3042045210 cites W2077215180 @default.
- W3042045210 cites W2077847090 @default.
- W3042045210 cites W2103482121 @default.
- W3042045210 cites W2109364787 @default.
- W3042045210 cites W2122274805 @default.
- W3042045210 cites W2123060977 @default.
- W3042045210 cites W2123808725 @default.
- W3042045210 cites W2132982517 @default.
- W3042045210 cites W2133920285 @default.
- W3042045210 cites W2133990480 @default.
- W3042045210 cites W2134691826 @default.
- W3042045210 cites W2139974998 @default.
- W3042045210 cites W2143381319 @default.
- W3042045210 cites W2143594378 @default.
- W3042045210 cites W2151554678 @default.
- W3042045210 cites W2155758104 @default.
- W3042045210 cites W2165885026 @default.
- W3042045210 cites W2167101736 @default.
- W3042045210 cites W2167159964 @default.
- W3042045210 cites W2169064301 @default.
- W3042045210 cites W2196983891 @default.
- W3042045210 cites W2271389764 @default.
- W3042045210 cites W2290402024 @default.
- W3042045210 cites W2290883490 @default.
- W3042045210 cites W2343420905 @default.
- W3042045210 cites W2410137293 @default.
- W3042045210 cites W2481453975 @default.
- W3042045210 cites W2538439818 @default.
- W3042045210 cites W2553198105 @default.
- W3042045210 cites W2553769569 @default.
- W3042045210 cites W2575262114 @default.
- W3042045210 cites W2609220535 @default.
- W3042045210 cites W2659806505 @default.
- W3042045210 cites W2734283703 @default.
- W3042045210 cites W2738900493 @default.
- W3042045210 cites W2754840697 @default.
- W3042045210 cites W2767936726 @default.
- W3042045210 cites W2776226778 @default.
- W3042045210 cites W2783969692 @default.
- W3042045210 cites W2784834174 @default.
- W3042045210 cites W2787824789 @default.
- W3042045210 cites W2790501127 @default.
- W3042045210 cites W2791503449 @default.
- W3042045210 cites W2801536506 @default.
- W3042045210 cites W2801670208 @default.
- W3042045210 cites W2802713807 @default.
- W3042045210 cites W2808586429 @default.
- W3042045210 cites W2813026946 @default.
- W3042045210 cites W2883013658 @default.
- W3042045210 cites W2883341185 @default.
- W3042045210 cites W2885770227 @default.
- W3042045210 cites W2889803518 @default.
- W3042045210 cites W2896052764 @default.
- W3042045210 cites W2919979744 @default.
- W3042045210 cites W2941753313 @default.
- W3042045210 cites W2963753818 @default.
- W3042045210 cites W3014974411 @default.
- W3042045210 cites W4212817109 @default.
- W3042045210 cites W4236137412 @default.
- W3042045210 cites W4249247926 @default.
- W3042045210 cites W582829353 @default.
- W3042045210 doi "https://doi.org/10.1016/j.cie.2020.106628" @default.
- W3042045210 hasPublicationYear "2020" @default.
- W3042045210 type Work @default.
- W3042045210 sameAs 3042045210 @default.
- W3042045210 citedByCount "58" @default.
- W3042045210 countsByYear W30420452102020 @default.
- W3042045210 countsByYear W30420452102021 @default.
- W3042045210 countsByYear W30420452102022 @default.
- W3042045210 countsByYear W30420452102023 @default.
- W3042045210 crossrefType "journal-article" @default.