Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042162019> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3042162019 endingPage "2854" @default.
- W3042162019 startingPage "2846" @default.
- W3042162019 abstract "Effective epidural needle placement and injection involves accurate identification of the midline of the spine. Ultrasound, as a safe pre-procedural imaging modality, is suitable for epidural guidance because it offers adequate visibility of the vertebral anatomy. However, image interpretation remains a key challenge, especially for novices. A deep neural network is proposed to automatically classify the transverse ultrasound images of the vertebrae and identify the midline. To distinguish midline images from off-center frames, the proposed network detects the left-right symmetric anatomic landmarks. To assess the feasibility of the proposed method for midline detection, a data set of ultrasound images was collected from 20 volunteers, whose body mass indices were less than 30. The data were split into two segments, for training and test. The performance of the proposed method was further evaluated using fourfold cross validation. Moreover, it was compared against a state-of-the-art deep neural network. Compared with the gold standard provided by an expert sonographer, the proposed trained network correctly classified 88% of the transverse planes from unseen test patients. This capability supports the first step of guiding the placement of an epidural needle." @default.
- W3042162019 created "2020-07-16" @default.
- W3042162019 creator A5023095072 @default.
- W3042162019 creator A5031212409 @default.
- W3042162019 creator A5043147671 @default.
- W3042162019 creator A5088844445 @default.
- W3042162019 date "2020-10-01" @default.
- W3042162019 modified "2023-09-24" @default.
- W3042162019 title "Automatic Midline Identification in Transverse 2-D Ultrasound Images of the Spine" @default.
- W3042162019 cites W1526645184 @default.
- W3042162019 cites W1854746140 @default.
- W3042162019 cites W2033310064 @default.
- W3042162019 cites W2035463944 @default.
- W3042162019 cites W2084413241 @default.
- W3042162019 cites W2112796928 @default.
- W3042162019 cites W2116702220 @default.
- W3042162019 cites W2284198383 @default.
- W3042162019 cites W2598488459 @default.
- W3042162019 cites W2604009228 @default.
- W3042162019 doi "https://doi.org/10.1016/j.ultrasmedbio.2020.04.018" @default.
- W3042162019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32646685" @default.
- W3042162019 hasPublicationYear "2020" @default.
- W3042162019 type Work @default.
- W3042162019 sameAs 3042162019 @default.
- W3042162019 citedByCount "1" @default.
- W3042162019 countsByYear W30421620192022 @default.
- W3042162019 crossrefType "journal-article" @default.
- W3042162019 hasAuthorship W3042162019A5023095072 @default.
- W3042162019 hasAuthorship W3042162019A5031212409 @default.
- W3042162019 hasAuthorship W3042162019A5043147671 @default.
- W3042162019 hasAuthorship W3042162019A5088844445 @default.
- W3042162019 hasConcept C116834253 @default.
- W3042162019 hasConcept C126838900 @default.
- W3042162019 hasConcept C143753070 @default.
- W3042162019 hasConcept C154945302 @default.
- W3042162019 hasConcept C2778941581 @default.
- W3042162019 hasConcept C31972630 @default.
- W3042162019 hasConcept C40993552 @default.
- W3042162019 hasConcept C41008148 @default.
- W3042162019 hasConcept C50644808 @default.
- W3042162019 hasConcept C59822182 @default.
- W3042162019 hasConcept C71924100 @default.
- W3042162019 hasConcept C86803240 @default.
- W3042162019 hasConceptScore W3042162019C116834253 @default.
- W3042162019 hasConceptScore W3042162019C126838900 @default.
- W3042162019 hasConceptScore W3042162019C143753070 @default.
- W3042162019 hasConceptScore W3042162019C154945302 @default.
- W3042162019 hasConceptScore W3042162019C2778941581 @default.
- W3042162019 hasConceptScore W3042162019C31972630 @default.
- W3042162019 hasConceptScore W3042162019C40993552 @default.
- W3042162019 hasConceptScore W3042162019C41008148 @default.
- W3042162019 hasConceptScore W3042162019C50644808 @default.
- W3042162019 hasConceptScore W3042162019C59822182 @default.
- W3042162019 hasConceptScore W3042162019C71924100 @default.
- W3042162019 hasConceptScore W3042162019C86803240 @default.
- W3042162019 hasFunder F4320334593 @default.
- W3042162019 hasIssue "10" @default.
- W3042162019 hasLocation W30421620191 @default.
- W3042162019 hasOpenAccess W3042162019 @default.
- W3042162019 hasPrimaryLocation W30421620191 @default.
- W3042162019 hasRelatedWork W2853977 @default.
- W3042162019 hasRelatedWork W3129629 @default.
- W3042162019 hasRelatedWork W3588801 @default.
- W3042162019 hasRelatedWork W4005426 @default.
- W3042162019 hasRelatedWork W553262 @default.
- W3042162019 hasRelatedWork W5893267 @default.
- W3042162019 hasRelatedWork W6251899 @default.
- W3042162019 hasRelatedWork W7119418 @default.
- W3042162019 hasRelatedWork W7649915 @default.
- W3042162019 hasRelatedWork W8815345 @default.
- W3042162019 hasVolume "46" @default.
- W3042162019 isParatext "false" @default.
- W3042162019 isRetracted "false" @default.
- W3042162019 magId "3042162019" @default.
- W3042162019 workType "article" @default.