Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042201787> ?p ?o ?g. }
- W3042201787 abstract "Predisaster damage predictions and postdisaster damage assessments often inadequately capture the intensity and spatial–temporal complexity of natural hazard-caused damage. Accurate identification of areas with the greatest need in the wake of a disaster requires assessment of both the hazards and community vulnerabilities. This study evaluated the contribution of eight hazard and vulnerability drivers of structural damage due to Hurricane María in Puerto Rico, including wind, flood, landslide, and vulnerability measures via ensemble decision tree algorithms. Results from the algorithms indicate that vulnerability measures, including a structural vulnerability index and a social vulnerability index, were the leading predictors of damage, followed by wind, flood, and landslide measures. Therefore, it is critical to consider community vulnerabilities in damage pattern analyses and targeted, predisaster mitigation efforts." @default.
- W3042201787 created "2020-07-16" @default.
- W3042201787 creator A5013714898 @default.
- W3042201787 creator A5016298945 @default.
- W3042201787 creator A5022802322 @default.
- W3042201787 creator A5025878818 @default.
- W3042201787 creator A5067464768 @default.
- W3042201787 date "2021-08-01" @default.
- W3042201787 modified "2023-10-12" @default.
- W3042201787 title "Quantifying the Role of Vulnerability in Hurricane Damage via a Machine Learning Case Study" @default.
- W3042201787 cites W1502420420 @default.
- W3042201787 cites W1678356000 @default.
- W3042201787 cites W1875061881 @default.
- W3042201787 cites W1970267724 @default.
- W3042201787 cites W1977769591 @default.
- W3042201787 cites W1991854274 @default.
- W3042201787 cites W2028680021 @default.
- W3042201787 cites W2031553845 @default.
- W3042201787 cites W2034876258 @default.
- W3042201787 cites W2047409389 @default.
- W3042201787 cites W2054924919 @default.
- W3042201787 cites W2070493638 @default.
- W3042201787 cites W2081321531 @default.
- W3042201787 cites W2100862548 @default.
- W3042201787 cites W2104401484 @default.
- W3042201787 cites W2118978333 @default.
- W3042201787 cites W2135593176 @default.
- W3042201787 cites W2143403601 @default.
- W3042201787 cites W2144443458 @default.
- W3042201787 cites W2146019855 @default.
- W3042201787 cites W2287278712 @default.
- W3042201787 cites W2470942791 @default.
- W3042201787 cites W2514901420 @default.
- W3042201787 cites W2640557513 @default.
- W3042201787 cites W2756584199 @default.
- W3042201787 cites W2786411210 @default.
- W3042201787 cites W2790051527 @default.
- W3042201787 cites W2793350103 @default.
- W3042201787 cites W2796299618 @default.
- W3042201787 cites W2897451325 @default.
- W3042201787 cites W2902913073 @default.
- W3042201787 cites W2911964244 @default.
- W3042201787 cites W2912539592 @default.
- W3042201787 cites W2995073060 @default.
- W3042201787 cites W2996343897 @default.
- W3042201787 cites W3003137319 @default.
- W3042201787 cites W4212883601 @default.
- W3042201787 cites W4281481760 @default.
- W3042201787 cites W588320544 @default.
- W3042201787 cites W596984334 @default.
- W3042201787 cites W77980820 @default.
- W3042201787 doi "https://doi.org/10.1061/(asce)nh.1527-6996.0000460" @default.
- W3042201787 hasPublicationYear "2021" @default.
- W3042201787 type Work @default.
- W3042201787 sameAs 3042201787 @default.
- W3042201787 citedByCount "6" @default.
- W3042201787 countsByYear W30422017872022 @default.
- W3042201787 countsByYear W30422017872023 @default.
- W3042201787 crossrefType "journal-article" @default.
- W3042201787 hasAuthorship W3042201787A5013714898 @default.
- W3042201787 hasAuthorship W3042201787A5016298945 @default.
- W3042201787 hasAuthorship W3042201787A5022802322 @default.
- W3042201787 hasAuthorship W3042201787A5025878818 @default.
- W3042201787 hasAuthorship W3042201787A5067464768 @default.
- W3042201787 hasBestOaLocation W30422017871 @default.
- W3042201787 hasConcept C107826830 @default.
- W3042201787 hasConcept C111368507 @default.
- W3042201787 hasConcept C127313418 @default.
- W3042201787 hasConcept C132651083 @default.
- W3042201787 hasConcept C137176749 @default.
- W3042201787 hasConcept C153294291 @default.
- W3042201787 hasConcept C15744967 @default.
- W3042201787 hasConcept C165205528 @default.
- W3042201787 hasConcept C166566181 @default.
- W3042201787 hasConcept C166957645 @default.
- W3042201787 hasConcept C167063184 @default.
- W3042201787 hasConcept C178790620 @default.
- W3042201787 hasConcept C185592680 @default.
- W3042201787 hasConcept C186295008 @default.
- W3042201787 hasConcept C205649164 @default.
- W3042201787 hasConcept C2779501324 @default.
- W3042201787 hasConcept C2781069661 @default.
- W3042201787 hasConcept C38652104 @default.
- W3042201787 hasConcept C39410599 @default.
- W3042201787 hasConcept C39432304 @default.
- W3042201787 hasConcept C41008148 @default.
- W3042201787 hasConcept C49261128 @default.
- W3042201787 hasConcept C542102704 @default.
- W3042201787 hasConcept C74256435 @default.
- W3042201787 hasConcept C95713431 @default.
- W3042201787 hasConceptScore W3042201787C107826830 @default.
- W3042201787 hasConceptScore W3042201787C111368507 @default.
- W3042201787 hasConceptScore W3042201787C127313418 @default.
- W3042201787 hasConceptScore W3042201787C132651083 @default.
- W3042201787 hasConceptScore W3042201787C137176749 @default.
- W3042201787 hasConceptScore W3042201787C153294291 @default.
- W3042201787 hasConceptScore W3042201787C15744967 @default.
- W3042201787 hasConceptScore W3042201787C165205528 @default.
- W3042201787 hasConceptScore W3042201787C166566181 @default.
- W3042201787 hasConceptScore W3042201787C166957645 @default.