Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042354433> ?p ?o ?g. }
- W3042354433 endingPage "4917" @default.
- W3042354433 startingPage "4917" @default.
- W3042354433 abstract "Variable Speed Limit (VSL) control systems are widely studied as solutions for improving safety and throughput on urban motorways. Machine learning techniques, specifically Reinforcement Learning (RL) methods, are a promising alternative for setting up VSL since they can learn and react to different traffic situations without knowing the explicit model of the motorway dynamics. However, the efficiency of combined RL-VSL is highly related to the class of the used RL algorithm, and description of the managed motorway section in which the RL-VSL agent sets the appropriate speed limits. Currently, there is no existing overview of RL algorithm applications in the domain of VSL. Therefore, a comprehensive survey on the state of the art of RL-VSL is presented. Best practices are summarized, and new viewpoints and future research directions, including an overview of current open research questions are presented." @default.
- W3042354433 created "2020-07-23" @default.
- W3042354433 creator A5052860840 @default.
- W3042354433 creator A5054587466 @default.
- W3042354433 creator A5062220993 @default.
- W3042354433 creator A5087612511 @default.
- W3042354433 date "2020-07-17" @default.
- W3042354433 modified "2023-10-05" @default.
- W3042354433 title "An Overview of Reinforcement Learning Methods for Variable Speed Limit Control" @default.
- W3042354433 cites W1857301280 @default.
- W3042354433 cites W1966166193 @default.
- W3042354433 cites W1977502938 @default.
- W3042354433 cites W1986935961 @default.
- W3042354433 cites W1993286459 @default.
- W3042354433 cites W1994722092 @default.
- W3042354433 cites W2001901081 @default.
- W3042354433 cites W2004353783 @default.
- W3042354433 cites W2022689755 @default.
- W3042354433 cites W2048327764 @default.
- W3042354433 cites W2051002517 @default.
- W3042354433 cites W2064675550 @default.
- W3042354433 cites W2087897077 @default.
- W3042354433 cites W2088595989 @default.
- W3042354433 cites W2091565802 @default.
- W3042354433 cites W2095797625 @default.
- W3042354433 cites W2095912259 @default.
- W3042354433 cites W2108957357 @default.
- W3042354433 cites W2109776856 @default.
- W3042354433 cites W2121984807 @default.
- W3042354433 cites W2140722533 @default.
- W3042354433 cites W2346806992 @default.
- W3042354433 cites W2427963213 @default.
- W3042354433 cites W2464614383 @default.
- W3042354433 cites W2515483953 @default.
- W3042354433 cites W2583813242 @default.
- W3042354433 cites W2624924877 @default.
- W3042354433 cites W2733886754 @default.
- W3042354433 cites W2773649677 @default.
- W3042354433 cites W2904529603 @default.
- W3042354433 cites W2920836636 @default.
- W3042354433 cites W2949449669 @default.
- W3042354433 cites W2952494572 @default.
- W3042354433 cites W2955212148 @default.
- W3042354433 cites W2965996200 @default.
- W3042354433 cites W2968802360 @default.
- W3042354433 cites W2983175198 @default.
- W3042354433 cites W2987458861 @default.
- W3042354433 cites W3000682836 @default.
- W3042354433 cites W3025876483 @default.
- W3042354433 cites W3035721219 @default.
- W3042354433 cites W32403112 @default.
- W3042354433 doi "https://doi.org/10.3390/app10144917" @default.
- W3042354433 hasPublicationYear "2020" @default.
- W3042354433 type Work @default.
- W3042354433 sameAs 3042354433 @default.
- W3042354433 citedByCount "16" @default.
- W3042354433 countsByYear W30423544332021 @default.
- W3042354433 countsByYear W30423544332022 @default.
- W3042354433 countsByYear W30423544332023 @default.
- W3042354433 crossrefType "journal-article" @default.
- W3042354433 hasAuthorship W3042354433A5052860840 @default.
- W3042354433 hasAuthorship W3042354433A5054587466 @default.
- W3042354433 hasAuthorship W3042354433A5062220993 @default.
- W3042354433 hasAuthorship W3042354433A5087612511 @default.
- W3042354433 hasBestOaLocation W30423544331 @default.
- W3042354433 hasConcept C127413603 @default.
- W3042354433 hasConcept C134306372 @default.
- W3042354433 hasConcept C142362112 @default.
- W3042354433 hasConcept C151201525 @default.
- W3042354433 hasConcept C153349607 @default.
- W3042354433 hasConcept C154945302 @default.
- W3042354433 hasConcept C182365436 @default.
- W3042354433 hasConcept C22212356 @default.
- W3042354433 hasConcept C2775924081 @default.
- W3042354433 hasConcept C2776035091 @default.
- W3042354433 hasConcept C2780210587 @default.
- W3042354433 hasConcept C33923547 @default.
- W3042354433 hasConcept C36503486 @default.
- W3042354433 hasConcept C41008148 @default.
- W3042354433 hasConcept C42475967 @default.
- W3042354433 hasConcept C97541855 @default.
- W3042354433 hasConceptScore W3042354433C127413603 @default.
- W3042354433 hasConceptScore W3042354433C134306372 @default.
- W3042354433 hasConceptScore W3042354433C142362112 @default.
- W3042354433 hasConceptScore W3042354433C151201525 @default.
- W3042354433 hasConceptScore W3042354433C153349607 @default.
- W3042354433 hasConceptScore W3042354433C154945302 @default.
- W3042354433 hasConceptScore W3042354433C182365436 @default.
- W3042354433 hasConceptScore W3042354433C22212356 @default.
- W3042354433 hasConceptScore W3042354433C2775924081 @default.
- W3042354433 hasConceptScore W3042354433C2776035091 @default.
- W3042354433 hasConceptScore W3042354433C2780210587 @default.
- W3042354433 hasConceptScore W3042354433C33923547 @default.
- W3042354433 hasConceptScore W3042354433C36503486 @default.
- W3042354433 hasConceptScore W3042354433C41008148 @default.
- W3042354433 hasConceptScore W3042354433C42475967 @default.
- W3042354433 hasConceptScore W3042354433C97541855 @default.
- W3042354433 hasIssue "14" @default.