Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042536719> ?p ?o ?g. }
- W3042536719 endingPage "2987" @default.
- W3042536719 startingPage "2975" @default.
- W3042536719 abstract "Long-term time series prediction is a challenging and essential task both in theory and practice. Recently, information granulation is shown to be an appropriate tool for the long-term forecast. Though some models for the long-term prediction problem have been proposed using information granulation recently, there is still a growing need to develop new prediction approaches for time series data based on information granule, which can capture the dynamic trend change with high accuracy. In this article, a long-term prediction approach, based on back-propagation neural network and information granule, is proposed. First, the individual numerical intervals for the time series are obtained by using the principle of justifiable granularity in information granule. Then, an automatic linear trend extraction method is developed to extract the trend change, which is inherited in granules. Finally, a hierarchy of neural network is constructed to carry out prediction by using information granule as input. Experiments using publicly available time series datasets demonstrate that the proposed approach can achieve better performance than the existing models for long-term prediction." @default.
- W3042536719 created "2020-07-23" @default.
- W3042536719 creator A5023440365 @default.
- W3042536719 creator A5035836466 @default.
- W3042536719 creator A5082668502 @default.
- W3042536719 date "2021-10-01" @default.
- W3042536719 modified "2023-10-06" @default.
- W3042536719 title "Information Granules-Based BP Neural Network for Long-Term Prediction of Time Series" @default.
- W3042536719 cites W1125761772 @default.
- W3042536719 cites W1853995153 @default.
- W3042536719 cites W1964892656 @default.
- W3042536719 cites W1979637725 @default.
- W3042536719 cites W1983438816 @default.
- W3042536719 cites W2002203871 @default.
- W3042536719 cites W2025623395 @default.
- W3042536719 cites W2026314284 @default.
- W3042536719 cites W2036681246 @default.
- W3042536719 cites W2046356540 @default.
- W3042536719 cites W2059429344 @default.
- W3042536719 cites W2067496326 @default.
- W3042536719 cites W2069454342 @default.
- W3042536719 cites W2083164987 @default.
- W3042536719 cites W2089085970 @default.
- W3042536719 cites W2090287545 @default.
- W3042536719 cites W2097325952 @default.
- W3042536719 cites W2152195021 @default.
- W3042536719 cites W2152954632 @default.
- W3042536719 cites W2157423047 @default.
- W3042536719 cites W2293288274 @default.
- W3042536719 cites W2328299249 @default.
- W3042536719 cites W2535619815 @default.
- W3042536719 cites W2550257869 @default.
- W3042536719 cites W2590282505 @default.
- W3042536719 cites W2758428971 @default.
- W3042536719 cites W2758694693 @default.
- W3042536719 cites W2773000467 @default.
- W3042536719 cites W2775379762 @default.
- W3042536719 cites W2787084639 @default.
- W3042536719 cites W2792819830 @default.
- W3042536719 cites W2796601240 @default.
- W3042536719 cites W2802161886 @default.
- W3042536719 cites W2893774593 @default.
- W3042536719 cites W2894821558 @default.
- W3042536719 cites W4237591687 @default.
- W3042536719 cites W4252617411 @default.
- W3042536719 doi "https://doi.org/10.1109/tfuzz.2020.3009764" @default.
- W3042536719 hasPublicationYear "2021" @default.
- W3042536719 type Work @default.
- W3042536719 sameAs 3042536719 @default.
- W3042536719 citedByCount "13" @default.
- W3042536719 countsByYear W30425367192021 @default.
- W3042536719 countsByYear W30425367192022 @default.
- W3042536719 countsByYear W30425367192023 @default.
- W3042536719 crossrefType "journal-article" @default.
- W3042536719 hasAuthorship W3042536719A5023440365 @default.
- W3042536719 hasAuthorship W3042536719A5035836466 @default.
- W3042536719 hasAuthorship W3042536719A5082668502 @default.
- W3042536719 hasConcept C111012933 @default.
- W3042536719 hasConcept C111919701 @default.
- W3042536719 hasConcept C119857082 @default.
- W3042536719 hasConcept C121332964 @default.
- W3042536719 hasConcept C124101348 @default.
- W3042536719 hasConcept C151406439 @default.
- W3042536719 hasConcept C154945302 @default.
- W3042536719 hasConcept C17209119 @default.
- W3042536719 hasConcept C177774035 @default.
- W3042536719 hasConcept C2776537626 @default.
- W3042536719 hasConcept C41008148 @default.
- W3042536719 hasConcept C50644808 @default.
- W3042536719 hasConcept C61797465 @default.
- W3042536719 hasConcept C62520636 @default.
- W3042536719 hasConcept C76155785 @default.
- W3042536719 hasConceptScore W3042536719C111012933 @default.
- W3042536719 hasConceptScore W3042536719C111919701 @default.
- W3042536719 hasConceptScore W3042536719C119857082 @default.
- W3042536719 hasConceptScore W3042536719C121332964 @default.
- W3042536719 hasConceptScore W3042536719C124101348 @default.
- W3042536719 hasConceptScore W3042536719C151406439 @default.
- W3042536719 hasConceptScore W3042536719C154945302 @default.
- W3042536719 hasConceptScore W3042536719C17209119 @default.
- W3042536719 hasConceptScore W3042536719C177774035 @default.
- W3042536719 hasConceptScore W3042536719C2776537626 @default.
- W3042536719 hasConceptScore W3042536719C41008148 @default.
- W3042536719 hasConceptScore W3042536719C50644808 @default.
- W3042536719 hasConceptScore W3042536719C61797465 @default.
- W3042536719 hasConceptScore W3042536719C62520636 @default.
- W3042536719 hasConceptScore W3042536719C76155785 @default.
- W3042536719 hasFunder F4320309612 @default.
- W3042536719 hasFunder F4320321001 @default.
- W3042536719 hasIssue "10" @default.
- W3042536719 hasLocation W30425367191 @default.
- W3042536719 hasOpenAccess W3042536719 @default.
- W3042536719 hasPrimaryLocation W30425367191 @default.
- W3042536719 hasRelatedWork W1967099464 @default.
- W3042536719 hasRelatedWork W1976030966 @default.
- W3042536719 hasRelatedWork W1999249392 @default.
- W3042536719 hasRelatedWork W2100304891 @default.
- W3042536719 hasRelatedWork W2194389439 @default.