Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042592324> ?p ?o ?g. }
- W3042592324 endingPage "107433" @default.
- W3042592324 startingPage "107433" @default.
- W3042592324 abstract "We propose Auto-3P, an Autonomous module for Virtual Network Functions Performance Prediction and Placement at network cloud and edge facilities based on Machine Learning (ML). Auto-3P augments the autonomous placement capabilities of MANagement and Orchestration frameworks (MANOs) by considering both resource availability at hosting nodes and the implied impact of a VNF node placement decisions on the whole service level end-to-end performance. Unlike that, most existing placement methods take a rather myopic approach after manual rule-based decisions, and/or based exclusively on a host-centric view that focuses merely on node-local resource availability and network metrics. We evaluate and validate Auto-3P with real-field trials in the context of a well-defined Smart City Safety use case using a real end-to-end application over a real city-based testbed. We meticulously conduct repeated tests to assess (i) the accuracy of our adopted prediction models; and (ii) their placement performance against three other existing MANO approaches, namely, a “Traditional”, a “Latency-aware” and a “Random” one, as well as against a collection of well-known Time Series Forecasting (TSF) methods. Our results show that the accuracy of our ML models outperforms the one by TSF models, with the most prominent accuracy performances being exhibited by models such as K-Nearest Neighbors Regression (K-NNR), Decision Tree (DT), and Support Vector Regression (SVR). What is more, the resulted end-to-end service level performance of our approach outperforms “Traditional”, “Latency-aware”, and Random MANO placement. Last, Auto-3P achieves load balancing at selected VNF hosts without degrading end-to-end service level delay, and without a need for a (fixed) overload threshold check, unlike what is suggested by other works in the literature for coping with heavy system-wide load conditions." @default.
- W3042592324 created "2020-07-23" @default.
- W3042592324 creator A5016646288 @default.
- W3042592324 creator A5024590871 @default.
- W3042592324 creator A5030580652 @default.
- W3042592324 creator A5043178847 @default.
- W3042592324 creator A5044001504 @default.
- W3042592324 date "2020-11-01" @default.
- W3042592324 modified "2023-10-16" @default.
- W3042592324 title "Auto-3P: An autonomous VNF performance prediction & placement framework based on machine learning" @default.
- W3042592324 cites W2040975718 @default.
- W3042592324 cites W2087831325 @default.
- W3042592324 cites W2196263691 @default.
- W3042592324 cites W2327445973 @default.
- W3042592324 cites W2530186453 @default.
- W3042592324 cites W2546238658 @default.
- W3042592324 cites W2586630827 @default.
- W3042592324 cites W2593522104 @default.
- W3042592324 cites W2626134354 @default.
- W3042592324 cites W2742537553 @default.
- W3042592324 cites W2791363235 @default.
- W3042592324 cites W2805091420 @default.
- W3042592324 cites W2889474327 @default.
- W3042592324 cites W2891839658 @default.
- W3042592324 cites W2894866963 @default.
- W3042592324 cites W2900804979 @default.
- W3042592324 cites W2903500163 @default.
- W3042592324 cites W2944905389 @default.
- W3042592324 cites W2962948535 @default.
- W3042592324 cites W2963162514 @default.
- W3042592324 cites W2964128427 @default.
- W3042592324 cites W3016314826 @default.
- W3042592324 cites W4255466416 @default.
- W3042592324 doi "https://doi.org/10.1016/j.comnet.2020.107433" @default.
- W3042592324 hasPublicationYear "2020" @default.
- W3042592324 type Work @default.
- W3042592324 sameAs 3042592324 @default.
- W3042592324 citedByCount "9" @default.
- W3042592324 countsByYear W30425923242020 @default.
- W3042592324 countsByYear W30425923242021 @default.
- W3042592324 countsByYear W30425923242022 @default.
- W3042592324 countsByYear W30425923242023 @default.
- W3042592324 crossrefType "journal-article" @default.
- W3042592324 hasAuthorship W3042592324A5016646288 @default.
- W3042592324 hasAuthorship W3042592324A5024590871 @default.
- W3042592324 hasAuthorship W3042592324A5030580652 @default.
- W3042592324 hasAuthorship W3042592324A5043178847 @default.
- W3042592324 hasAuthorship W3042592324A5044001504 @default.
- W3042592324 hasBestOaLocation W30425923241 @default.
- W3042592324 hasConcept C111919701 @default.
- W3042592324 hasConcept C119857082 @default.
- W3042592324 hasConcept C120314980 @default.
- W3042592324 hasConcept C12267149 @default.
- W3042592324 hasConcept C142362112 @default.
- W3042592324 hasConcept C151730666 @default.
- W3042592324 hasConcept C152565575 @default.
- W3042592324 hasConcept C153349607 @default.
- W3042592324 hasConcept C154945302 @default.
- W3042592324 hasConcept C169258074 @default.
- W3042592324 hasConcept C199168358 @default.
- W3042592324 hasConcept C203274722 @default.
- W3042592324 hasConcept C2779343474 @default.
- W3042592324 hasConcept C31258907 @default.
- W3042592324 hasConcept C31395832 @default.
- W3042592324 hasConcept C41008148 @default.
- W3042592324 hasConcept C558565934 @default.
- W3042592324 hasConcept C76155785 @default.
- W3042592324 hasConcept C79974875 @default.
- W3042592324 hasConcept C82876162 @default.
- W3042592324 hasConcept C84525736 @default.
- W3042592324 hasConcept C86803240 @default.
- W3042592324 hasConceptScore W3042592324C111919701 @default.
- W3042592324 hasConceptScore W3042592324C119857082 @default.
- W3042592324 hasConceptScore W3042592324C120314980 @default.
- W3042592324 hasConceptScore W3042592324C12267149 @default.
- W3042592324 hasConceptScore W3042592324C142362112 @default.
- W3042592324 hasConceptScore W3042592324C151730666 @default.
- W3042592324 hasConceptScore W3042592324C152565575 @default.
- W3042592324 hasConceptScore W3042592324C153349607 @default.
- W3042592324 hasConceptScore W3042592324C154945302 @default.
- W3042592324 hasConceptScore W3042592324C169258074 @default.
- W3042592324 hasConceptScore W3042592324C199168358 @default.
- W3042592324 hasConceptScore W3042592324C203274722 @default.
- W3042592324 hasConceptScore W3042592324C2779343474 @default.
- W3042592324 hasConceptScore W3042592324C31258907 @default.
- W3042592324 hasConceptScore W3042592324C31395832 @default.
- W3042592324 hasConceptScore W3042592324C41008148 @default.
- W3042592324 hasConceptScore W3042592324C558565934 @default.
- W3042592324 hasConceptScore W3042592324C76155785 @default.
- W3042592324 hasConceptScore W3042592324C79974875 @default.
- W3042592324 hasConceptScore W3042592324C82876162 @default.
- W3042592324 hasConceptScore W3042592324C84525736 @default.
- W3042592324 hasConceptScore W3042592324C86803240 @default.
- W3042592324 hasFunder F4320332195 @default.
- W3042592324 hasLocation W30425923241 @default.
- W3042592324 hasLocation W30425923242 @default.
- W3042592324 hasLocation W30425923243 @default.
- W3042592324 hasOpenAccess W3042592324 @default.