Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042628135> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3042628135 endingPage "250" @default.
- W3042628135 startingPage "227" @default.
- W3042628135 abstract "This chapter discusses the use of machine learning in modeling and optimizing free radical polymerization processes. Artificial neural networks, static and dynamic, with various configurations, used individually or aggregated in stack, are presented in different types of applications: direct and inverse modeling, soft sensors, or optimal control. A particular aspect is represented by neuro-evolution, by combining neural networks with evolutionary algorithms (genetic algorithms and differential evolution), with applications in determining optimal neural models or in optimizing chemical processes. In most cases, the selected examples, many of which are the author's own contributions, show the gradual improvement in performance of the applied method. Polymerization processes were chosen as case studies as they have complicated phenomenology, which gives rise to significant modeling difficulties. Machine learning techniques, which are capable of overcoming many of these disadvantages, provide satisfactory results." @default.
- W3042628135 created "2020-07-23" @default.
- W3042628135 creator A5082397403 @default.
- W3042628135 date "2020-07-21" @default.
- W3042628135 modified "2023-09-26" @default.
- W3042628135 title "Machine Learning Techniques Applied to a Complex Polymerization Process" @default.
- W3042628135 cites W1927181533 @default.
- W3042628135 cites W1978698288 @default.
- W3042628135 cites W1978851512 @default.
- W3042628135 cites W2004369810 @default.
- W3042628135 cites W2011861171 @default.
- W3042628135 cites W2013357878 @default.
- W3042628135 cites W2036053642 @default.
- W3042628135 cites W2043099848 @default.
- W3042628135 cites W2043220524 @default.
- W3042628135 cites W2048570605 @default.
- W3042628135 cites W2051343264 @default.
- W3042628135 cites W2062368510 @default.
- W3042628135 cites W2064638450 @default.
- W3042628135 cites W2072941248 @default.
- W3042628135 cites W2073515924 @default.
- W3042628135 cites W2087333109 @default.
- W3042628135 cites W2088819366 @default.
- W3042628135 cites W2115755783 @default.
- W3042628135 cites W2135829152 @default.
- W3042628135 cites W2136459762 @default.
- W3042628135 cites W2150228450 @default.
- W3042628135 cites W2169830130 @default.
- W3042628135 cites W2170942650 @default.
- W3042628135 cites W2319834710 @default.
- W3042628135 cites W4254926762 @default.
- W3042628135 doi "https://doi.org/10.1039/9781839160233-00227" @default.
- W3042628135 hasPublicationYear "2020" @default.
- W3042628135 type Work @default.
- W3042628135 sameAs 3042628135 @default.
- W3042628135 citedByCount "1" @default.
- W3042628135 countsByYear W30426281352021 @default.
- W3042628135 crossrefType "book-chapter" @default.
- W3042628135 hasAuthorship W3042628135A5082397403 @default.
- W3042628135 hasConcept C111472728 @default.
- W3042628135 hasConcept C111919701 @default.
- W3042628135 hasConcept C119857082 @default.
- W3042628135 hasConcept C138885662 @default.
- W3042628135 hasConcept C154945302 @default.
- W3042628135 hasConcept C41008148 @default.
- W3042628135 hasConcept C50644808 @default.
- W3042628135 hasConcept C74750220 @default.
- W3042628135 hasConcept C84269361 @default.
- W3042628135 hasConcept C98045186 @default.
- W3042628135 hasConceptScore W3042628135C111472728 @default.
- W3042628135 hasConceptScore W3042628135C111919701 @default.
- W3042628135 hasConceptScore W3042628135C119857082 @default.
- W3042628135 hasConceptScore W3042628135C138885662 @default.
- W3042628135 hasConceptScore W3042628135C154945302 @default.
- W3042628135 hasConceptScore W3042628135C41008148 @default.
- W3042628135 hasConceptScore W3042628135C50644808 @default.
- W3042628135 hasConceptScore W3042628135C74750220 @default.
- W3042628135 hasConceptScore W3042628135C84269361 @default.
- W3042628135 hasConceptScore W3042628135C98045186 @default.
- W3042628135 hasLocation W30426281351 @default.
- W3042628135 hasOpenAccess W3042628135 @default.
- W3042628135 hasPrimaryLocation W30426281351 @default.
- W3042628135 hasRelatedWork W2386387936 @default.
- W3042628135 hasRelatedWork W2961085424 @default.
- W3042628135 hasRelatedWork W3046775127 @default.
- W3042628135 hasRelatedWork W3170094116 @default.
- W3042628135 hasRelatedWork W4205958290 @default.
- W3042628135 hasRelatedWork W4285260836 @default.
- W3042628135 hasRelatedWork W4286629047 @default.
- W3042628135 hasRelatedWork W4306321456 @default.
- W3042628135 hasRelatedWork W4306674287 @default.
- W3042628135 hasRelatedWork W4224009465 @default.
- W3042628135 isParatext "false" @default.
- W3042628135 isRetracted "false" @default.
- W3042628135 magId "3042628135" @default.
- W3042628135 workType "book-chapter" @default.