Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042641187> ?p ?o ?g. }
- W3042641187 endingPage "111051" @default.
- W3042641187 startingPage "111051" @default.
- W3042641187 abstract "Current research on flooding risk often focuses on understanding hazards, de-emphasizing the complex pathways of exposure and vulnerability. We investigated the use of both hydrologic and social demographic data for flood exposure mapping with Random Forest (RF) regression and classification algorithms trained to predict both parcel- and tract-level flood insurance claims within New York State, US. Topographic characteristics best described flood claim frequency, but RF prediction skill was improved at both spatial scales when socioeconomic data was incorporated. Substantial improvements occurred at the tract-level when the percentage of minority residents, housing stock value and age, and the political dissimilarity index of voting precincts were used to predict insurance claims. Census tracts with higher numbers of claims and greater densities of low-lying tax parcels tended to have low proportions of minority residents, newer houses, and less political similarity to state level government. We compared this data-driven approach and a physically-based pluvial flood routing model for prediction of the spatial extents of flooding claims in two nearby catchments of differing land use. The floodplain we defined with physically based modeling agreed well with existing federal flood insurance rate maps, but underestimated the spatial extents of historical claim generating areas. In contrast, RF classification incorporating hydrologic and socioeconomic demographic data likely overestimated the flood-exposed areas. Our research indicates that quantitative incorporation of social data can improve flooding exposure estimates." @default.
- W3042641187 created "2020-07-23" @default.
- W3042641187 creator A5025779572 @default.
- W3042641187 creator A5029824911 @default.
- W3042641187 creator A5054162688 @default.
- W3042641187 creator A5078566870 @default.
- W3042641187 creator A5080810030 @default.
- W3042641187 creator A5082005299 @default.
- W3042641187 date "2020-10-01" @default.
- W3042641187 modified "2023-10-12" @default.
- W3042641187 title "Predicting flood insurance claims with hydrologic and socioeconomic demographics via machine learning: Exploring the roles of topography, minority populations, and political dissimilarity" @default.
- W3042641187 cites W1561921245 @default.
- W3042641187 cites W1694119402 @default.
- W3042641187 cites W1767977828 @default.
- W3042641187 cites W1894267360 @default.
- W3042641187 cites W1946988346 @default.
- W3042641187 cites W1947997293 @default.
- W3042641187 cites W1980796057 @default.
- W3042641187 cites W1983039370 @default.
- W3042641187 cites W1983413249 @default.
- W3042641187 cites W1983946354 @default.
- W3042641187 cites W1992037631 @default.
- W3042641187 cites W2026342944 @default.
- W3042641187 cites W2030064303 @default.
- W3042641187 cites W2032755743 @default.
- W3042641187 cites W2055668893 @default.
- W3042641187 cites W2081211529 @default.
- W3042641187 cites W2083029259 @default.
- W3042641187 cites W2096105985 @default.
- W3042641187 cites W2097598642 @default.
- W3042641187 cites W2101185005 @default.
- W3042641187 cites W2123677000 @default.
- W3042641187 cites W2128385391 @default.
- W3042641187 cites W2151514073 @default.
- W3042641187 cites W2163613444 @default.
- W3042641187 cites W2177725520 @default.
- W3042641187 cites W2194090377 @default.
- W3042641187 cites W2346877152 @default.
- W3042641187 cites W2347030173 @default.
- W3042641187 cites W2467107001 @default.
- W3042641187 cites W2556898932 @default.
- W3042641187 cites W2585588780 @default.
- W3042641187 cites W2612175007 @default.
- W3042641187 cites W2621358776 @default.
- W3042641187 cites W2640557513 @default.
- W3042641187 cites W2733154328 @default.
- W3042641187 cites W2760790704 @default.
- W3042641187 cites W2765742909 @default.
- W3042641187 cites W2768689216 @default.
- W3042641187 cites W2779295731 @default.
- W3042641187 cites W2780363565 @default.
- W3042641187 cites W2788470047 @default.
- W3042641187 cites W2788598761 @default.
- W3042641187 cites W2791328889 @default.
- W3042641187 cites W2793311784 @default.
- W3042641187 cites W2796299618 @default.
- W3042641187 cites W2802677109 @default.
- W3042641187 cites W2803899929 @default.
- W3042641187 cites W2807998232 @default.
- W3042641187 cites W2810296449 @default.
- W3042641187 cites W2883987780 @default.
- W3042641187 cites W2884046503 @default.
- W3042641187 cites W2887796935 @default.
- W3042641187 cites W2889578611 @default.
- W3042641187 cites W2894489221 @default.
- W3042641187 cites W2895963304 @default.
- W3042641187 cites W2899026392 @default.
- W3042641187 cites W2901295140 @default.
- W3042641187 cites W2901485038 @default.
- W3042641187 cites W2903266193 @default.
- W3042641187 cites W2914388185 @default.
- W3042641187 cites W2914828997 @default.
- W3042641187 cites W2918304342 @default.
- W3042641187 cites W2924604776 @default.
- W3042641187 cites W2927539500 @default.
- W3042641187 cites W2946020082 @default.
- W3042641187 cites W2948909033 @default.
- W3042641187 cites W2953751527 @default.
- W3042641187 cites W2955858817 @default.
- W3042641187 cites W2969778911 @default.
- W3042641187 cites W3124479295 @default.
- W3042641187 cites W4211056572 @default.
- W3042641187 cites W842753440 @default.
- W3042641187 doi "https://doi.org/10.1016/j.jenvman.2020.111051" @default.
- W3042641187 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32677622" @default.
- W3042641187 hasPublicationYear "2020" @default.
- W3042641187 type Work @default.
- W3042641187 sameAs 3042641187 @default.
- W3042641187 citedByCount "20" @default.
- W3042641187 countsByYear W30426411872021 @default.
- W3042641187 countsByYear W30426411872022 @default.
- W3042641187 countsByYear W30426411872023 @default.
- W3042641187 crossrefType "journal-article" @default.
- W3042641187 hasAuthorship W3042641187A5025779572 @default.
- W3042641187 hasAuthorship W3042641187A5029824911 @default.
- W3042641187 hasAuthorship W3042641187A5054162688 @default.
- W3042641187 hasAuthorship W3042641187A5078566870 @default.
- W3042641187 hasAuthorship W3042641187A5080810030 @default.