Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042686112> ?p ?o ?g. }
- W3042686112 endingPage "1240" @default.
- W3042686112 startingPage "1228" @default.
- W3042686112 abstract "This work focuses on the identification of five of the most common ferritic morphologies present in welded fusion zones of low carbon steel through images acquired by photomicrographies. With this regards, we discuss the importance of the gray-level co-occurrence matrix to extract the features to be used as the input of the computational intelligence techniques. We use artificial neural networks and support vector machines to identify the proportions of each morphology and present the error identification rate for each technique. The results show that the use of gray-level co-occurrence extraction allows a less intense computational model with statistical validity and the support vector machine as a computational intelligence technique allows smaller variability when compared to the artificial neural networks." @default.
- W3042686112 created "2020-07-23" @default.
- W3042686112 creator A5030624417 @default.
- W3042686112 creator A5043251716 @default.
- W3042686112 creator A5044364020 @default.
- W3042686112 creator A5057331501 @default.
- W3042686112 creator A5078112537 @default.
- W3042686112 creator A5089090441 @default.
- W3042686112 date "2020-07-14" @default.
- W3042686112 modified "2023-10-03" @default.
- W3042686112 title "An enhanced method for the identification of ferritic morphologies in welded fusion zones based on gray-level co-occurrence matrix: A computational intelligence approach" @default.
- W3042686112 cites W1133464454 @default.
- W3042686112 cites W1510748981 @default.
- W3042686112 cites W1648080457 @default.
- W3042686112 cites W1780196031 @default.
- W3042686112 cites W1966115059 @default.
- W3042686112 cites W1984425298 @default.
- W3042686112 cites W1988115241 @default.
- W3042686112 cites W1996574651 @default.
- W3042686112 cites W2002243093 @default.
- W3042686112 cites W2013336452 @default.
- W3042686112 cites W2016210396 @default.
- W3042686112 cites W2032927332 @default.
- W3042686112 cites W2039063839 @default.
- W3042686112 cites W2044465660 @default.
- W3042686112 cites W2050236324 @default.
- W3042686112 cites W2051812123 @default.
- W3042686112 cites W2068539145 @default.
- W3042686112 cites W2068661811 @default.
- W3042686112 cites W2069510105 @default.
- W3042686112 cites W2072032995 @default.
- W3042686112 cites W2082738326 @default.
- W3042686112 cites W2102120659 @default.
- W3042686112 cites W2111023733 @default.
- W3042686112 cites W2117812871 @default.
- W3042686112 cites W2165966284 @default.
- W3042686112 cites W2208076688 @default.
- W3042686112 cites W2297152540 @default.
- W3042686112 cites W2403729827 @default.
- W3042686112 cites W2462290730 @default.
- W3042686112 cites W2466625119 @default.
- W3042686112 cites W2467551271 @default.
- W3042686112 cites W2537366620 @default.
- W3042686112 cites W2585285202 @default.
- W3042686112 cites W2586155783 @default.
- W3042686112 cites W2606178361 @default.
- W3042686112 cites W2609022486 @default.
- W3042686112 cites W2625472365 @default.
- W3042686112 cites W2753847056 @default.
- W3042686112 cites W2756339226 @default.
- W3042686112 cites W2760710953 @default.
- W3042686112 cites W2777291561 @default.
- W3042686112 cites W2781468723 @default.
- W3042686112 cites W2792384468 @default.
- W3042686112 cites W2800287564 @default.
- W3042686112 cites W2885156894 @default.
- W3042686112 cites W2890122134 @default.
- W3042686112 cites W2891223530 @default.
- W3042686112 cites W2964074215 @default.
- W3042686112 cites W4239570827 @default.
- W3042686112 doi "https://doi.org/10.1177/0954406220942268" @default.
- W3042686112 hasPublicationYear "2020" @default.
- W3042686112 type Work @default.
- W3042686112 sameAs 3042686112 @default.
- W3042686112 citedByCount "3" @default.
- W3042686112 countsByYear W30426861122022 @default.
- W3042686112 crossrefType "journal-article" @default.
- W3042686112 hasAuthorship W3042686112A5030624417 @default.
- W3042686112 hasAuthorship W3042686112A5043251716 @default.
- W3042686112 hasAuthorship W3042686112A5044364020 @default.
- W3042686112 hasAuthorship W3042686112A5057331501 @default.
- W3042686112 hasAuthorship W3042686112A5078112537 @default.
- W3042686112 hasAuthorship W3042686112A5089090441 @default.
- W3042686112 hasConcept C106487976 @default.
- W3042686112 hasConcept C11413529 @default.
- W3042686112 hasConcept C115961682 @default.
- W3042686112 hasConcept C116834253 @default.
- W3042686112 hasConcept C117479156 @default.
- W3042686112 hasConcept C119857082 @default.
- W3042686112 hasConcept C12267149 @default.
- W3042686112 hasConcept C126838900 @default.
- W3042686112 hasConcept C138885662 @default.
- W3042686112 hasConcept C139502532 @default.
- W3042686112 hasConcept C153180895 @default.
- W3042686112 hasConcept C154945302 @default.
- W3042686112 hasConcept C158525013 @default.
- W3042686112 hasConcept C159985019 @default.
- W3042686112 hasConcept C166275286 @default.
- W3042686112 hasConcept C191897082 @default.
- W3042686112 hasConcept C192562407 @default.
- W3042686112 hasConcept C19474535 @default.
- W3042686112 hasConcept C2985861186 @default.
- W3042686112 hasConcept C41008148 @default.
- W3042686112 hasConcept C41895202 @default.
- W3042686112 hasConcept C50644808 @default.
- W3042686112 hasConcept C59822182 @default.
- W3042686112 hasConcept C63099799 @default.
- W3042686112 hasConcept C71924100 @default.