Matches in SemOpenAlex for { <https://semopenalex.org/work/W304270484> ?p ?o ?g. }
- W304270484 abstract "This paper is an exploration of the conceptual issues that have arisen in the course of building a natural language generation (NLG) system for automatic test item generation. While natural language processing techniques are applicable to general verbal items, mathematics word problems are particularly tractable targets for natural language general techniques. The problem is to have a method for representing verbal content that can play a dual role, serving both as a representation of the generic conceptual structure that appears to be critical for mathematics word problems and that can provide the basis for natural language generation. An excellent candidate for this purpose can be found in Frame Semantics, a linguistic theory of word meaning that appears to have exactly the needed properties. Each type of mathematics word problem appears to make systematic use of a specific semantic frame. Distance-ratetime problems provide an excellent illustration of the principles involved. The analytical methods outlined in this paper have been used as the basis for the construction of a prototype NLG, Model Creator, that supports the automatic item generation of distance-rate-time problems. The paper describes the prototype system and notes its potential. The real power of NLG for automatic item generation will come when language resources can be relinked and reused, but even it its current form, it offers considerable power and flexibility for generating new items in a controlled manner. (Contains 68 references.) (SLD) Reproductions supplied by EDRS are the best that can be made from the original document. PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) 1 U.S. DEPARTMENT OF EDUCATION Office sf Educahonal Research and Improvement EDUcATIONAL RESOURCES INFORMATION CENTER (ERIC) This document has been reproduced as received from the person or organization originating it. 0 Minor changes have been rnada to improve reproduction quality. Points of view or opinions stated in this document do not necessarily represent official OERI position or policy. Automatic Item Generation via Frame Semantics: Natural Language Generation of Math Word Problems Paul Deane Educational Testing Service Princeton, NJ 08541 Kathleen Sheehan Educational Testing Service Princeton, NJ 08541 Paper Presented at the: Annual Meeting of the National Council of Measurement in Education Chicago, ILApril 2003 BEST COPY AVAILABLE 2 1. The Role of Natural Language Processing in Automatic Item Generation 1.1. The Scope of Automatic Item Generation There is an increasing interest in the use of Automatic Item Generation (AIG) in educational assessment, concomitant with the development of technologies which have brought delivery of test content by computers into the mainstream. Early work (e.g. Bejar 1986, 1993, 1996, 2002; Bejar & Yocom 1991, Hively, Patterson & Page 1968, Irvine, Dunn & Anderson 1990, Laduca et al. 1986, Meisner, Luecht & Reckase 1993) has led to a flowering of AIG research (see, e.g., Irvine & Kyllonen 2002 for an overview.) Automatic item generation -the practice of creating assessment items algorithmically -can be motivated in part by a number of obvious practical advantages (cf. Bennett in press). AIG can speed or even partially automate the development of new items, it can provide similar items at the same level of difficulty, thus improving test security, and it can support adaptive testing by providing similar items that vary systematically in difficulty. Given the attractiveness of these goals, much recent research has focused upon evaluating the extent to which these promises can be met (cf. Bejar et al. 2002, Enright, Morley & Sheehan 1999, Enright & Sheehan 2002, Hombo & Dresher 2001, Wright 2001). However, automatic item generation obviously and critically depends upon well-founded models of the cognitive abilities underlying performance. Where such models are lacking, generation algorithms can have heuristic usefulness only. Much of the recent progress in AIG has come in areas where there are well-founded cognitive theories to support the development of AIG algorithms, e.g., matrix completion (Embretson 1993, 1998, 1999, 2001) or analytical reasoning (Newstead et al. 2002). It is thus important to approach AIG in the light of theories of test construction which ground item design upon an evidentiary basis, such as Evidence Centered Design (ECD), cf. Mislevy et al. 2002. 1.2. Generation of Verbal Items: Templates and Natural Language Generation It is not particularly surprising to note that applications of AIG have been concentrated in areas where the underlying cognitive domain is restricted in content and highly structured (e.g., various forms of abstract reasoning and mathematics.) Progress in automatic generation of verbal" @default.
- W304270484 created "2016-06-24" @default.
- W304270484 creator A5018632496 @default.
- W304270484 creator A5075866410 @default.
- W304270484 date "2003-04-01" @default.
- W304270484 modified "2023-09-27" @default.
- W304270484 title "Automatic Item Generation via Frame Semantics: Natural Language Generation of Math Word Problems." @default.
- W304270484 cites W1514290684 @default.
- W304270484 cites W1514875575 @default.
- W304270484 cites W1569430537 @default.
- W304270484 cites W1594161230 @default.
- W304270484 cites W1636687449 @default.
- W304270484 cites W1650184876 @default.
- W304270484 cites W16917232 @default.
- W304270484 cites W1814908022 @default.
- W304270484 cites W1967931779 @default.
- W304270484 cites W1968784445 @default.
- W304270484 cites W1985610876 @default.
- W304270484 cites W1998696323 @default.
- W304270484 cites W1999727699 @default.
- W304270484 cites W2000900121 @default.
- W304270484 cites W2002059464 @default.
- W304270484 cites W2004702017 @default.
- W304270484 cites W2005769803 @default.
- W304270484 cites W2009862599 @default.
- W304270484 cites W2012315685 @default.
- W304270484 cites W2028655295 @default.
- W304270484 cites W2030325274 @default.
- W304270484 cites W2032152873 @default.
- W304270484 cites W2045656069 @default.
- W304270484 cites W2048783550 @default.
- W304270484 cites W2062717531 @default.
- W304270484 cites W2066018628 @default.
- W304270484 cites W2073427231 @default.
- W304270484 cites W2073655564 @default.
- W304270484 cites W2077985991 @default.
- W304270484 cites W2087152310 @default.
- W304270484 cites W2102925141 @default.
- W304270484 cites W2111104741 @default.
- W304270484 cites W2115792525 @default.
- W304270484 cites W2131883438 @default.
- W304270484 cites W2134199742 @default.
- W304270484 cites W2151170651 @default.
- W304270484 cites W2175268987 @default.
- W304270484 cites W2177397700 @default.
- W304270484 cites W2724620518 @default.
- W304270484 cites W2759427686 @default.
- W304270484 cites W2799225444 @default.
- W304270484 cites W3009986018 @default.
- W304270484 cites W3107271803 @default.
- W304270484 cites W3108531971 @default.
- W304270484 cites W1672564754 @default.
- W304270484 cites W1997788290 @default.
- W304270484 cites W3027109149 @default.
- W304270484 hasPublicationYear "2003" @default.
- W304270484 type Work @default.
- W304270484 sameAs 304270484 @default.
- W304270484 citedByCount "16" @default.
- W304270484 countsByYear W3042704842015 @default.
- W304270484 countsByYear W3042704842016 @default.
- W304270484 countsByYear W3042704842019 @default.
- W304270484 countsByYear W3042704842020 @default.
- W304270484 countsByYear W3042704842021 @default.
- W304270484 crossrefType "journal-article" @default.
- W304270484 hasAuthorship W304270484A5018632496 @default.
- W304270484 hasAuthorship W304270484A5075866410 @default.
- W304270484 hasConcept C105795698 @default.
- W304270484 hasConcept C126042441 @default.
- W304270484 hasConcept C138885662 @default.
- W304270484 hasConcept C154945302 @default.
- W304270484 hasConcept C15744967 @default.
- W304270484 hasConcept C17744445 @default.
- W304270484 hasConcept C184337299 @default.
- W304270484 hasConcept C195324797 @default.
- W304270484 hasConcept C199360897 @default.
- W304270484 hasConcept C199539241 @default.
- W304270484 hasConcept C204321447 @default.
- W304270484 hasConcept C2776187449 @default.
- W304270484 hasConcept C2776359362 @default.
- W304270484 hasConcept C2780598303 @default.
- W304270484 hasConcept C2780876879 @default.
- W304270484 hasConcept C33923547 @default.
- W304270484 hasConcept C41008148 @default.
- W304270484 hasConcept C41895202 @default.
- W304270484 hasConcept C542102704 @default.
- W304270484 hasConcept C76155785 @default.
- W304270484 hasConcept C90805587 @default.
- W304270484 hasConcept C94625758 @default.
- W304270484 hasConceptScore W304270484C105795698 @default.
- W304270484 hasConceptScore W304270484C126042441 @default.
- W304270484 hasConceptScore W304270484C138885662 @default.
- W304270484 hasConceptScore W304270484C154945302 @default.
- W304270484 hasConceptScore W304270484C15744967 @default.
- W304270484 hasConceptScore W304270484C17744445 @default.
- W304270484 hasConceptScore W304270484C184337299 @default.
- W304270484 hasConceptScore W304270484C195324797 @default.
- W304270484 hasConceptScore W304270484C199360897 @default.
- W304270484 hasConceptScore W304270484C199539241 @default.
- W304270484 hasConceptScore W304270484C204321447 @default.
- W304270484 hasConceptScore W304270484C2776187449 @default.