Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042706118> ?p ?o ?g. }
- W3042706118 abstract "Farmers require accurate yield estimates, since they are key to predicting the volume of stock needed at supermarkets and to organizing harvesting operations. In many cases, the yield is visually estimated by the crop producer, but this approach is not accurate or time efficient. This study presents a rapid sensing and yield estimation scheme using off-the-shelf aerial imagery and deep learning. A Region-Convolutional Neural Network was trained to detect and count the number of apple fruit on individual trees located on the orthomosaic built from images taken by the unmanned aerial vehicle (UAV). The results obtained with the proposed approach were compared with apple counts made in situ by an agrotechnician, and an R2 value of 0.86 was acquired (MAE: 10.35 and RMSE: 13.56). As only parts of the tree fruits were visible in the top-view images, linear regression was used to estimate the number of total apples on each tree. An R2 value of 0.80 (MAE: 128.56 and RMSE: 130.56) was obtained. With the number of fruits detected and tree coordinates two shapefile using Python script in Google Colab were generated. With the previous information two yield maps were displayed: one with information per tree and another with information per tree row. We are confident that these results will help to maximize the crop producers’ outputs via optimized orchard management." @default.
- W3042706118 created "2020-07-23" @default.
- W3042706118 creator A5019379379 @default.
- W3042706118 creator A5032207699 @default.
- W3042706118 creator A5086176346 @default.
- W3042706118 creator A5087371998 @default.
- W3042706118 date "2020-07-15" @default.
- W3042706118 modified "2023-10-18" @default.
- W3042706118 title "A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique" @default.
- W3042706118 cites W1559528524 @default.
- W3042706118 cites W1971558391 @default.
- W3042706118 cites W1983016117 @default.
- W3042706118 cites W1989577535 @default.
- W3042706118 cites W2000157424 @default.
- W3042706118 cites W2022591200 @default.
- W3042706118 cites W2030915377 @default.
- W3042706118 cites W2032138925 @default.
- W3042706118 cites W2090890948 @default.
- W3042706118 cites W2091119928 @default.
- W3042706118 cites W2097737649 @default.
- W3042706118 cites W2116044718 @default.
- W3042706118 cites W2176950688 @default.
- W3042706118 cites W2231576311 @default.
- W3042706118 cites W2280619215 @default.
- W3042706118 cites W2396098103 @default.
- W3042706118 cites W2543665758 @default.
- W3042706118 cites W2555576940 @default.
- W3042706118 cites W2555929847 @default.
- W3042706118 cites W2609120775 @default.
- W3042706118 cites W2611227133 @default.
- W3042706118 cites W2757455114 @default.
- W3042706118 cites W2761140038 @default.
- W3042706118 cites W2790979755 @default.
- W3042706118 cites W2794284562 @default.
- W3042706118 cites W2794915299 @default.
- W3042706118 cites W2801837235 @default.
- W3042706118 cites W2803153939 @default.
- W3042706118 cites W2805142011 @default.
- W3042706118 cites W2809306198 @default.
- W3042706118 cites W2883113516 @default.
- W3042706118 cites W2885121946 @default.
- W3042706118 cites W2887311010 @default.
- W3042706118 cites W2892924320 @default.
- W3042706118 cites W2897722020 @default.
- W3042706118 cites W2897826490 @default.
- W3042706118 cites W2897936636 @default.
- W3042706118 cites W2901312569 @default.
- W3042706118 cites W2901577545 @default.
- W3042706118 cites W2901867974 @default.
- W3042706118 cites W2904027073 @default.
- W3042706118 cites W2909494862 @default.
- W3042706118 cites W2917185127 @default.
- W3042706118 cites W2919115771 @default.
- W3042706118 cites W2920621226 @default.
- W3042706118 cites W2936718694 @default.
- W3042706118 cites W2950944546 @default.
- W3042706118 cites W2953473428 @default.
- W3042706118 cites W2962949934 @default.
- W3042706118 cites W2964153432 @default.
- W3042706118 cites W2966705629 @default.
- W3042706118 cites W2969938404 @default.
- W3042706118 cites W2980522727 @default.
- W3042706118 cites W2989904326 @default.
- W3042706118 cites W4234971943 @default.
- W3042706118 cites W4250174831 @default.
- W3042706118 cites W639708223 @default.
- W3042706118 cites W832457573 @default.
- W3042706118 doi "https://doi.org/10.3389/fpls.2020.01086" @default.
- W3042706118 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7378326" @default.
- W3042706118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32765566" @default.
- W3042706118 hasPublicationYear "2020" @default.
- W3042706118 type Work @default.
- W3042706118 sameAs 3042706118 @default.
- W3042706118 citedByCount "48" @default.
- W3042706118 countsByYear W30427061182020 @default.
- W3042706118 countsByYear W30427061182021 @default.
- W3042706118 countsByYear W30427061182022 @default.
- W3042706118 countsByYear W30427061182023 @default.
- W3042706118 crossrefType "journal-article" @default.
- W3042706118 hasAuthorship W3042706118A5019379379 @default.
- W3042706118 hasAuthorship W3042706118A5032207699 @default.
- W3042706118 hasAuthorship W3042706118A5086176346 @default.
- W3042706118 hasAuthorship W3042706118A5087371998 @default.
- W3042706118 hasBestOaLocation W30427061181 @default.
- W3042706118 hasConcept C105795698 @default.
- W3042706118 hasConcept C108583219 @default.
- W3042706118 hasConcept C111919701 @default.
- W3042706118 hasConcept C113174947 @default.
- W3042706118 hasConcept C134306372 @default.
- W3042706118 hasConcept C139945424 @default.
- W3042706118 hasConcept C144027150 @default.
- W3042706118 hasConcept C154945302 @default.
- W3042706118 hasConcept C2780753983 @default.
- W3042706118 hasConcept C33923547 @default.
- W3042706118 hasConcept C41008148 @default.
- W3042706118 hasConcept C519991488 @default.
- W3042706118 hasConcept C81363708 @default.
- W3042706118 hasConcept C86803240 @default.
- W3042706118 hasConceptScore W3042706118C105795698 @default.
- W3042706118 hasConceptScore W3042706118C108583219 @default.