Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042714573> ?p ?o ?g. }
- W3042714573 abstract "Modeling stochastic traffic behaviors at the microscopic level, such as car-following and lane-changing, is a crucial task to understand the interactions between individual vehicles in traffic streams. Leveraging a recently developed theory named physics regularized Gaussian process (PRGP), this study presents a stochastic microscopic traffic model that can capture the randomness and measure errors in the real world. Physical knowledge from classical car-following models is converted as physics regularizers, in the form of shadow Gaussian process (GP), of a multivariate PRGP for improving the modeling accuracy. More specifically, a Bayesian inference algorithm is developed to estimate the mean and kernel of GPs, and an enhanced latent force model is formulated to encode physical knowledge into stochastic processes. Also, based on the posterior regularization inference framework, an efficient stochastic optimization algorithm is developed to maximize the evidence lower-bound of the system likelihood. To evaluate the performance of the proposed models, this study conducts empirical studies on real-world vehicle trajectories from the NGSIM dataset. Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets, one contains lane-changing maneuvers and the other doesn't. The results show the proposed method outperforms the previous influential methods in estimation precision." @default.
- W3042714573 created "2020-07-23" @default.
- W3042714573 creator A5001784237 @default.
- W3042714573 creator A5003080721 @default.
- W3042714573 creator A5084016605 @default.
- W3042714573 date "2020-07-17" @default.
- W3042714573 modified "2023-09-27" @default.
- W3042714573 title "Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized Gaussian Process Approach." @default.
- W3042714573 cites W1481376060 @default.
- W3042714573 cites W1522301498 @default.
- W3042714573 cites W1560949607 @default.
- W3042714573 cites W1663973292 @default.
- W3042714573 cites W1746819321 @default.
- W3042714573 cites W1927865692 @default.
- W3042714573 cites W1965455100 @default.
- W3042714573 cites W1968719911 @default.
- W3042714573 cites W1969401882 @default.
- W3042714573 cites W1979690402 @default.
- W3042714573 cites W1980202415 @default.
- W3042714573 cites W1982463111 @default.
- W3042714573 cites W1987101509 @default.
- W3042714573 cites W1992661931 @default.
- W3042714573 cites W1994377164 @default.
- W3042714573 cites W2003642326 @default.
- W3042714573 cites W2006117070 @default.
- W3042714573 cites W2006820335 @default.
- W3042714573 cites W2007354440 @default.
- W3042714573 cites W2007971313 @default.
- W3042714573 cites W2011931151 @default.
- W3042714573 cites W2012892015 @default.
- W3042714573 cites W2019130306 @default.
- W3042714573 cites W2029952693 @default.
- W3042714573 cites W2031166225 @default.
- W3042714573 cites W2033024690 @default.
- W3042714573 cites W2043183617 @default.
- W3042714573 cites W2047688790 @default.
- W3042714573 cites W2054210802 @default.
- W3042714573 cites W2056877664 @default.
- W3042714573 cites W2059461096 @default.
- W3042714573 cites W2062931431 @default.
- W3042714573 cites W2065964172 @default.
- W3042714573 cites W2073563573 @default.
- W3042714573 cites W2077679034 @default.
- W3042714573 cites W2080767554 @default.
- W3042714573 cites W2085842743 @default.
- W3042714573 cites W2086635537 @default.
- W3042714573 cites W2090403203 @default.
- W3042714573 cites W2094039233 @default.
- W3042714573 cites W2099814779 @default.
- W3042714573 cites W2100645358 @default.
- W3042714573 cites W2104628520 @default.
- W3042714573 cites W2108196201 @default.
- W3042714573 cites W2109408606 @default.
- W3042714573 cites W2123649286 @default.
- W3042714573 cites W2124584833 @default.
- W3042714573 cites W2126270075 @default.
- W3042714573 cites W2135538542 @default.
- W3042714573 cites W2140688442 @default.
- W3042714573 cites W2146333962 @default.
- W3042714573 cites W2149866111 @default.
- W3042714573 cites W2154368244 @default.
- W3042714573 cites W2154376416 @default.
- W3042714573 cites W2161304083 @default.
- W3042714573 cites W2169982413 @default.
- W3042714573 cites W2465637560 @default.
- W3042714573 cites W2569133464 @default.
- W3042714573 cites W2584575382 @default.
- W3042714573 cites W2755552418 @default.
- W3042714573 cites W2761951612 @default.
- W3042714573 cites W2772097715 @default.
- W3042714573 cites W2793462440 @default.
- W3042714573 cites W2800143386 @default.
- W3042714573 cites W2802677721 @default.
- W3042714573 cites W2888239906 @default.
- W3042714573 cites W2890968382 @default.
- W3042714573 cites W2895643482 @default.
- W3042714573 cites W2899283552 @default.
- W3042714573 cites W2911764443 @default.
- W3042714573 cites W2964135722 @default.
- W3042714573 cites W3002563254 @default.
- W3042714573 cites W3003747211 @default.
- W3042714573 cites W3005176458 @default.
- W3042714573 cites W3009245989 @default.
- W3042714573 cites W3034913376 @default.
- W3042714573 cites W3105469151 @default.
- W3042714573 cites W3142078155 @default.
- W3042714573 cites W349861868 @default.
- W3042714573 cites W643043002 @default.
- W3042714573 cites W656701252 @default.
- W3042714573 cites W812754138 @default.
- W3042714573 cites W86483197 @default.
- W3042714573 cites W91298137 @default.
- W3042714573 cites W2188154198 @default.
- W3042714573 cites W2966065399 @default.
- W3042714573 hasPublicationYear "2020" @default.
- W3042714573 type Work @default.
- W3042714573 sameAs 3042714573 @default.
- W3042714573 citedByCount "0" @default.
- W3042714573 crossrefType "posted-content" @default.
- W3042714573 hasAuthorship W3042714573A5001784237 @default.