Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042720061> ?p ?o ?g. }
- W3042720061 endingPage "1988" @default.
- W3042720061 startingPage "1973" @default.
- W3042720061 abstract "Abstract Bamboo, as a pioneer vegetation, often forms forests on bare lands after catastrophic landslides. Compared to evergreen forest soil, bamboo forest soil is much more labile, with a higher percentage of microbially derived organic carbon (OC), lower molecular weight, and lower humic acid content. We hypothesised that different terrigenous organic matter (tOM) sources with varying lability and phosphorus (P) availability select for bacterioplankton with distinct metabolic pathways. We incubated natural bacterioplankton assemblages with tOM leached from bamboo forest soil (BOM) and evergreen forest soil (EOM) and compared these to a lake water control. To test if microbial metabolism would be limited by OC or P availability of each tOM treatment, we used acetate as an extra labile OC source and phosphate as an inorganic P source. Bacterial metabolism was measured by analysing respiration via O 2 consumption and production via tritiated thymidine (TdR) assimilation. Bacterioplankton metabolism is limited by the availability of P in BOM substrates. When using BOM, bacteria had higher enzymatic activities for phosphatase. The nutrients required for bacterial biomass seemed to be derived from organic matter. Under BOM treatment, bacterial production (BP) (0.92 ± 0.13 μg C L −1 hr −1 ) and cell specific TdR assimilation rates (0.015 ± 0.002 10 –18 M TdR cell −1 hr −1 ) were low. Adding P enhanced BP (BOM +P 1.52 ± 0.31 and BOM +C+P 2.25 ± 0.37 μg C L −1 hr −1 ) while acetate addition had no significant effect on BOM treatment. This indicated that the bacteria switched to using added inorganic P to respire a P‐limited BOM substrate, which increased total BP and abundance, resulting in even more active respiration and lower growth efficiency. We also found higher activities for chitin‐degrading enzyme β‐N‐acetylglucosaminidase, which is associated with N mining from aminosaccharides. Microbes using EOM, however, did not change metabolic strategies with additional acetate or/and inorganic P. This is due to higher concentrations of organic P in EOM substrates and the presence of inorganic N in the EOM leachates an alternative nutrient source. Bacteria produced β‐glucosidase and leucyl‐aminopeptidase in order to utilise the humic substances, which sustained greater bacterial abundance, higher BP (2.64 ± 0.39 μg C L −1 hr −1 ), and lower cell‐specific respiration. This yielded a much higher bacterial growth efficiency (15 ± 9.2%) than the lake water control. Our study demonstrated the aquatic metabolic discrepancy between tOM of different forest types. Bacterioplankton in BOM and EOM exhibit distinct metabolic responses. Bacterial metabolic strategy when using BOM implied that the supposedly stabilised biomass OM might be efficiently used by aquatic bacterioplankton. As the labile and nutrient‐deficient BOM is more susceptible to the influence of additional nutrients, fertiliser residues in bamboo forest catchments might have a stronger effect on aquatic bacterial metabolic pathways. Thus, it is important to take tOM differences into consideration when building models to estimate soil carbon turnover rates along a terrestrial–aquatic continuum." @default.
- W3042720061 created "2020-07-23" @default.
- W3042720061 creator A5005431396 @default.
- W3042720061 creator A5008441379 @default.
- W3042720061 creator A5038887374 @default.
- W3042720061 creator A5054109128 @default.
- W3042720061 creator A5070963338 @default.
- W3042720061 creator A5079118492 @default.
- W3042720061 creator A5089216695 @default.
- W3042720061 creator A5091552316 @default.
- W3042720061 date "2020-07-13" @default.
- W3042720061 modified "2023-09-26" @default.
- W3042720061 title "Effects of terrigenous organic substrates and additional phosphorus on bacterioplankton metabolism and exoenzyme stoichiometry" @default.
- W3042720061 cites W1531786503 @default.
- W3042720061 cites W1673045948 @default.
- W3042720061 cites W1767254696 @default.
- W3042720061 cites W1861601361 @default.
- W3042720061 cites W1864853258 @default.
- W3042720061 cites W1936209130 @default.
- W3042720061 cites W1963530707 @default.
- W3042720061 cites W1967035107 @default.
- W3042720061 cites W1967849218 @default.
- W3042720061 cites W1970872142 @default.
- W3042720061 cites W1971204620 @default.
- W3042720061 cites W1978715036 @default.
- W3042720061 cites W1989780969 @default.
- W3042720061 cites W1999760584 @default.
- W3042720061 cites W2002879827 @default.
- W3042720061 cites W2006295565 @default.
- W3042720061 cites W2007015762 @default.
- W3042720061 cites W2015398207 @default.
- W3042720061 cites W2020013482 @default.
- W3042720061 cites W2022192927 @default.
- W3042720061 cites W2023170579 @default.
- W3042720061 cites W2025081245 @default.
- W3042720061 cites W2025939314 @default.
- W3042720061 cites W2029450906 @default.
- W3042720061 cites W2035978219 @default.
- W3042720061 cites W2036182420 @default.
- W3042720061 cites W2038246936 @default.
- W3042720061 cites W2060036779 @default.
- W3042720061 cites W2070015813 @default.
- W3042720061 cites W2075347554 @default.
- W3042720061 cites W2076389936 @default.
- W3042720061 cites W2081776673 @default.
- W3042720061 cites W2087644856 @default.
- W3042720061 cites W2095976198 @default.
- W3042720061 cites W2096431747 @default.
- W3042720061 cites W2100752880 @default.
- W3042720061 cites W2103501127 @default.
- W3042720061 cites W2103607178 @default.
- W3042720061 cites W2104166468 @default.
- W3042720061 cites W2108807763 @default.
- W3042720061 cites W2109245475 @default.
- W3042720061 cites W2110224558 @default.
- W3042720061 cites W2114992090 @default.
- W3042720061 cites W2116948197 @default.
- W3042720061 cites W2119671698 @default.
- W3042720061 cites W2119931696 @default.
- W3042720061 cites W2122419936 @default.
- W3042720061 cites W2129903497 @default.
- W3042720061 cites W2130381234 @default.
- W3042720061 cites W2130846455 @default.
- W3042720061 cites W2139354429 @default.
- W3042720061 cites W2142384994 @default.
- W3042720061 cites W2146891368 @default.
- W3042720061 cites W2148005607 @default.
- W3042720061 cites W2150733856 @default.
- W3042720061 cites W2157382843 @default.
- W3042720061 cites W2159113839 @default.
- W3042720061 cites W2161298547 @default.
- W3042720061 cites W2162641150 @default.
- W3042720061 cites W2167341146 @default.
- W3042720061 cites W2171175187 @default.
- W3042720061 cites W2226409343 @default.
- W3042720061 cites W2401911887 @default.
- W3042720061 cites W2491458126 @default.
- W3042720061 cites W2513468703 @default.
- W3042720061 cites W2603080910 @default.
- W3042720061 cites W2772059649 @default.
- W3042720061 cites W2794039632 @default.
- W3042720061 cites W2901162838 @default.
- W3042720061 cites W7755730 @default.
- W3042720061 cites W98707733 @default.
- W3042720061 doi "https://doi.org/10.1111/fwb.13593" @default.
- W3042720061 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7689783" @default.
- W3042720061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33288968" @default.
- W3042720061 hasPublicationYear "2020" @default.
- W3042720061 type Work @default.
- W3042720061 sameAs 3042720061 @default.
- W3042720061 citedByCount "4" @default.
- W3042720061 countsByYear W30427200612021 @default.
- W3042720061 countsByYear W30427200612022 @default.
- W3042720061 countsByYear W30427200612023 @default.
- W3042720061 crossrefType "journal-article" @default.
- W3042720061 hasAuthorship W3042720061A5005431396 @default.
- W3042720061 hasAuthorship W3042720061A5008441379 @default.
- W3042720061 hasAuthorship W3042720061A5038887374 @default.