Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042743256> ?p ?o ?g. }
- W3042743256 endingPage "1922" @default.
- W3042743256 startingPage "1863" @default.
- W3042743256 abstract "Abstract Characterising intractable high-dimensional random variables is one of the fundamental challenges in stochastic computation. The recent surge of transport maps offers a mathematical foundation and new insights for tackling this challenge by coupling intractable random variables with tractable reference random variables. This paper generalises the functional tensor-train approximation of the inverse Rosenblatt transport recently developed by Dolgov et al. (Stat Comput 30:603–625, 2020) to a wide class of high-dimensional non-negative functions, such as unnormalised probability density functions. First, we extend the inverse Rosenblatt transform to enable the transport to general reference measures other than the uniform measure. We develop an efficient procedure to compute this transport from a squared tensor-train decomposition which preserves the monotonicity. More crucially, we integrate the proposed order-preserving functional tensor-train transport into a nested variable transformation framework inspired by the layered structure of deep neural networks. The resulting deep inverse Rosenblatt transport significantly expands the capability of tensor approximations and transport maps to random variables with complicated nonlinear interactions and concentrated density functions. We demonstrate the efficiency of the proposed approach on a range of applications in statistical learning and uncertainty quantification, including parameter estimation for dynamical systems and inverse problems constrained by partial differential equations." @default.
- W3042743256 created "2020-07-23" @default.
- W3042743256 creator A5018717402 @default.
- W3042743256 creator A5067931953 @default.
- W3042743256 date "2021-09-21" @default.
- W3042743256 modified "2023-10-01" @default.
- W3042743256 title "Deep Composition of Tensor-Trains Using Squared Inverse Rosenblatt Transports" @default.
- W3042743256 cites W1522264804 @default.
- W3042743256 cites W1534349507 @default.
- W3042743256 cites W1545319692 @default.
- W3042743256 cites W1592510033 @default.
- W3042743256 cites W1858056047 @default.
- W3042743256 cites W1973396249 @default.
- W3042743256 cites W1973594349 @default.
- W3042743256 cites W1978501336 @default.
- W3042743256 cites W1993482030 @default.
- W3042743256 cites W1995565517 @default.
- W3042743256 cites W1996869553 @default.
- W3042743256 cites W1998037613 @default.
- W3042743256 cites W2001518794 @default.
- W3042743256 cites W2011732752 @default.
- W3042743256 cites W2013145865 @default.
- W3042743256 cites W2013164703 @default.
- W3042743256 cites W2016407890 @default.
- W3042743256 cites W2016527001 @default.
- W3042743256 cites W2023103251 @default.
- W3042743256 cites W2024165284 @default.
- W3042743256 cites W2031216664 @default.
- W3042743256 cites W2043719428 @default.
- W3042743256 cites W2047591100 @default.
- W3042743256 cites W2049753327 @default.
- W3042743256 cites W2071544114 @default.
- W3042743256 cites W2078465266 @default.
- W3042743256 cites W2104067967 @default.
- W3042743256 cites W2129728672 @default.
- W3042743256 cites W2141696759 @default.
- W3042743256 cites W2159565862 @default.
- W3042743256 cites W2232528752 @default.
- W3042743256 cites W2274168723 @default.
- W3042743256 cites W2496219407 @default.
- W3042743256 cites W2569729041 @default.
- W3042743256 cites W2962947392 @default.
- W3042743256 cites W2963009826 @default.
- W3042743256 cites W2963964397 @default.
- W3042743256 cites W2982295692 @default.
- W3042743256 cites W3080914972 @default.
- W3042743256 cites W3098700198 @default.
- W3042743256 cites W3099467939 @default.
- W3042743256 cites W3101006260 @default.
- W3042743256 cites W3121471846 @default.
- W3042743256 cites W4288347845 @default.
- W3042743256 cites W50417968 @default.
- W3042743256 doi "https://doi.org/10.1007/s10208-021-09537-5" @default.
- W3042743256 hasPublicationYear "2021" @default.
- W3042743256 type Work @default.
- W3042743256 sameAs 3042743256 @default.
- W3042743256 citedByCount "7" @default.
- W3042743256 countsByYear W30427432562022 @default.
- W3042743256 countsByYear W30427432562023 @default.
- W3042743256 crossrefType "journal-article" @default.
- W3042743256 hasAuthorship W3042743256A5018717402 @default.
- W3042743256 hasAuthorship W3042743256A5067931953 @default.
- W3042743256 hasBestOaLocation W30427432561 @default.
- W3042743256 hasConcept C105795698 @default.
- W3042743256 hasConcept C122123141 @default.
- W3042743256 hasConcept C126255220 @default.
- W3042743256 hasConcept C134306372 @default.
- W3042743256 hasConcept C135252773 @default.
- W3042743256 hasConcept C155281189 @default.
- W3042743256 hasConcept C202444582 @default.
- W3042743256 hasConcept C207467116 @default.
- W3042743256 hasConcept C2524010 @default.
- W3042743256 hasConcept C28826006 @default.
- W3042743256 hasConcept C33923547 @default.
- W3042743256 hasConceptScore W3042743256C105795698 @default.
- W3042743256 hasConceptScore W3042743256C122123141 @default.
- W3042743256 hasConceptScore W3042743256C126255220 @default.
- W3042743256 hasConceptScore W3042743256C134306372 @default.
- W3042743256 hasConceptScore W3042743256C135252773 @default.
- W3042743256 hasConceptScore W3042743256C155281189 @default.
- W3042743256 hasConceptScore W3042743256C202444582 @default.
- W3042743256 hasConceptScore W3042743256C207467116 @default.
- W3042743256 hasConceptScore W3042743256C2524010 @default.
- W3042743256 hasConceptScore W3042743256C28826006 @default.
- W3042743256 hasConceptScore W3042743256C33923547 @default.
- W3042743256 hasIssue "6" @default.
- W3042743256 hasLocation W30427432561 @default.
- W3042743256 hasLocation W30427432562 @default.
- W3042743256 hasLocation W30427432563 @default.
- W3042743256 hasOpenAccess W3042743256 @default.
- W3042743256 hasPrimaryLocation W30427432561 @default.
- W3042743256 hasRelatedWork W1512208174 @default.
- W3042743256 hasRelatedWork W1991516674 @default.
- W3042743256 hasRelatedWork W2022313577 @default.
- W3042743256 hasRelatedWork W2298446516 @default.
- W3042743256 hasRelatedWork W2313042761 @default.
- W3042743256 hasRelatedWork W2329424818 @default.
- W3042743256 hasRelatedWork W2339811963 @default.