Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042777354> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3042777354 endingPage "492" @default.
- W3042777354 startingPage "485" @default.
- W3042777354 abstract "Abstract The inclusion of covariates in population models during drug development is a key step to understanding drug variability and support dosage regimen proposal, but high correlation among covariates often complicates the identification of the true covariate. We compared three covariate selection methods balancing data information and prior knowledge: (1) full fixed effect modelling (FFEM), with covariate selection prior to data analysis, (2) simplified stepwise covariate modelling (sSCM), data driven selection only, and (3) Prior-Adjusted Covariate Selection (PACS) mixing both. PACS penalizes the a priori less likely covariate model by adding to its objective function value (OFV) a prior probability-derived constant: $$2*{kern 1pt} ,{ln}left( {{Pr}left( X right)/left( {1 - {Pr}left( X right)} right)} right)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>2</mml:mn> <mml:mrow /> <mml:mo>∗</mml:mo> <mml:mspace /> <mml:mspace /> <mml:mo>ln</mml:mo> <mml:mfenced> <mml:mrow> <mml:mo>Pr</mml:mo> <mml:mfenced> <mml:mi>X</mml:mi> </mml:mfenced> <mml:mo>/</mml:mo> <mml:mfenced> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mo>Pr</mml:mo> <mml:mfenced> <mml:mi>X</mml:mi> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:math> , Pr(X) being the probability of the more likely covariate. Simulations were performed to compare their external performance (average OFV in a validation dataset of 10,000 subjects) in selecting the true covariate between two highly correlated covariates: 0.5, 0.7, or 0.9, after a training step on datasets of 12, 25 or 100 subjects (increasing power). With low power data no method was superior, except FFEM when associated with highly correlated covariates ( $$r=0.9$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.9</mml:mn> </mml:mrow> </mml:math> ), sSCM and PACS suffering both from selection bias. For high power data, PACS and sSCM performed similarly, both superior to FFEM. PACS is an alternative for covariate selection considering both the expected power to identify an anticipated covariate relation and the probability of prior information being correct. A proposed strategy is to use FFEM whenever the expected power to distinguish between contending models is < 80%, PACS when > 80% but < 100%, and SCM when the expected power is 100%." @default.
- W3042777354 created "2020-07-23" @default.
- W3042777354 creator A5045121987 @default.
- W3042777354 creator A5070310610 @default.
- W3042777354 creator A5091755856 @default.
- W3042777354 date "2020-07-13" @default.
- W3042777354 modified "2023-09-25" @default.
- W3042777354 title "Comparison of covariate selection methods with correlated covariates: prior information versus data information, or a mixture of both?" @default.
- W3042777354 cites W1496317234 @default.
- W3042777354 cites W1509693321 @default.
- W3042777354 cites W1517281160 @default.
- W3042777354 cites W1555920164 @default.
- W3042777354 cites W160670607 @default.
- W3042777354 cites W1986157879 @default.
- W3042777354 cites W2066996342 @default.
- W3042777354 cites W2087638201 @default.
- W3042777354 cites W2095523635 @default.
- W3042777354 cites W2514450936 @default.
- W3042777354 doi "https://doi.org/10.1007/s10928-020-09700-5" @default.
- W3042777354 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7520415" @default.
- W3042777354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32661654" @default.
- W3042777354 hasPublicationYear "2020" @default.
- W3042777354 type Work @default.
- W3042777354 sameAs 3042777354 @default.
- W3042777354 citedByCount "2" @default.
- W3042777354 countsByYear W30427773542022 @default.
- W3042777354 crossrefType "journal-article" @default.
- W3042777354 hasAuthorship W3042777354A5045121987 @default.
- W3042777354 hasAuthorship W3042777354A5070310610 @default.
- W3042777354 hasAuthorship W3042777354A5091755856 @default.
- W3042777354 hasBestOaLocation W30427773541 @default.
- W3042777354 hasConcept C105795698 @default.
- W3042777354 hasConcept C119043178 @default.
- W3042777354 hasConcept C33923547 @default.
- W3042777354 hasConcept C41008148 @default.
- W3042777354 hasConceptScore W3042777354C105795698 @default.
- W3042777354 hasConceptScore W3042777354C119043178 @default.
- W3042777354 hasConceptScore W3042777354C33923547 @default.
- W3042777354 hasConceptScore W3042777354C41008148 @default.
- W3042777354 hasFunder F4320336093 @default.
- W3042777354 hasIssue "5" @default.
- W3042777354 hasLocation W30427773541 @default.
- W3042777354 hasLocation W30427773542 @default.
- W3042777354 hasOpenAccess W3042777354 @default.
- W3042777354 hasPrimaryLocation W30427773541 @default.
- W3042777354 hasRelatedWork W1599085740 @default.
- W3042777354 hasRelatedWork W1993125394 @default.
- W3042777354 hasRelatedWork W1997383317 @default.
- W3042777354 hasRelatedWork W2037749392 @default.
- W3042777354 hasRelatedWork W2175660908 @default.
- W3042777354 hasRelatedWork W2409617670 @default.
- W3042777354 hasRelatedWork W2963128249 @default.
- W3042777354 hasRelatedWork W3124890365 @default.
- W3042777354 hasRelatedWork W2109980432 @default.
- W3042777354 hasRelatedWork W2550468039 @default.
- W3042777354 hasVolume "47" @default.
- W3042777354 isParatext "false" @default.
- W3042777354 isRetracted "false" @default.
- W3042777354 magId "3042777354" @default.
- W3042777354 workType "article" @default.