Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042804201> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3042804201 endingPage "2013" @default.
- W3042804201 startingPage "1997" @default.
- W3042804201 abstract "The asymptotic dimension of metric spaces is an important notion in geometric group theory introduced by Gromov. The metric spaces considered in this paper are the ones whose underlying spaces are the vertex-sets of graphs and whose metrics are the distance functions in graphs. A standard compactness argument shows that it suffices to consider the asymptotic dimension of classes of finite graphs. In this paper we prove that the asymptotic dimension of any proper minor-closed family, any class of graphs of bounded tree-width, and any class of graphs of bounded layered tree-width are at most 2, 1, and 2, respectively. The first result solves a question of Fujiwara and Papasoglu; the second and third results solve a number of questions of Bonamy, Bousquet, Esperet, Groenland, Pirot and Scott. These bounds for asymptotic dimension are optimal and improve a number of results in the literature. Our proofs can be transformed into linear or quadratic time algorithms for finding coverings witnessing the asymptotic dimension which is equivalent to finding weak diameter colorings for graphs. The key ingredient of our proof is a unified machinery about the asymptotic dimension of classes of graphs that have tree-decompositions of bounded adhesion over hereditary classes with known asymptotic dimension, which might be of independent interest." @default.
- W3042804201 created "2020-07-23" @default.
- W3042804201 creator A5084900180 @default.
- W3042804201 date "2021-01-01" @default.
- W3042804201 modified "2023-09-27" @default.
- W3042804201 title "Asymptotic dimension of minor-closed families and beyond" @default.
- W3042804201 cites W1520357511 @default.
- W3042804201 cites W1722280013 @default.
- W3042804201 cites W1966682191 @default.
- W3042804201 cites W1996066664 @default.
- W3042804201 cites W2059372025 @default.
- W3042804201 cites W2519651985 @default.
- W3042804201 cites W2963041295 @default.
- W3042804201 cites W2963368860 @default.
- W3042804201 cites W2963658942 @default.
- W3042804201 cites W2963696261 @default.
- W3042804201 cites W3037431972 @default.
- W3042804201 cites W3102574461 @default.
- W3042804201 cites W3105899476 @default.
- W3042804201 doi "https://doi.org/10.1137/1.9781611976465.119" @default.
- W3042804201 hasPublicationYear "2021" @default.
- W3042804201 type Work @default.
- W3042804201 sameAs 3042804201 @default.
- W3042804201 citedByCount "4" @default.
- W3042804201 countsByYear W30428042012020 @default.
- W3042804201 countsByYear W30428042012021 @default.
- W3042804201 countsByYear W30428042012023 @default.
- W3042804201 crossrefType "book-chapter" @default.
- W3042804201 hasAuthorship W3042804201A5084900180 @default.
- W3042804201 hasBestOaLocation W30428042011 @default.
- W3042804201 hasConcept C101597101 @default.
- W3042804201 hasConcept C102192266 @default.
- W3042804201 hasConcept C114614502 @default.
- W3042804201 hasConcept C115311070 @default.
- W3042804201 hasConcept C118615104 @default.
- W3042804201 hasConcept C132525143 @default.
- W3042804201 hasConcept C134306372 @default.
- W3042804201 hasConcept C160446614 @default.
- W3042804201 hasConcept C18648836 @default.
- W3042804201 hasConcept C194198291 @default.
- W3042804201 hasConcept C198043062 @default.
- W3042804201 hasConcept C202444582 @default.
- W3042804201 hasConcept C26546657 @default.
- W3042804201 hasConcept C28235433 @default.
- W3042804201 hasConcept C33676613 @default.
- W3042804201 hasConcept C33923547 @default.
- W3042804201 hasConcept C34388435 @default.
- W3042804201 hasConcept C40636538 @default.
- W3042804201 hasConcept C60933471 @default.
- W3042804201 hasConcept C80661125 @default.
- W3042804201 hasConcept C90377204 @default.
- W3042804201 hasConcept C95341145 @default.
- W3042804201 hasConceptScore W3042804201C101597101 @default.
- W3042804201 hasConceptScore W3042804201C102192266 @default.
- W3042804201 hasConceptScore W3042804201C114614502 @default.
- W3042804201 hasConceptScore W3042804201C115311070 @default.
- W3042804201 hasConceptScore W3042804201C118615104 @default.
- W3042804201 hasConceptScore W3042804201C132525143 @default.
- W3042804201 hasConceptScore W3042804201C134306372 @default.
- W3042804201 hasConceptScore W3042804201C160446614 @default.
- W3042804201 hasConceptScore W3042804201C18648836 @default.
- W3042804201 hasConceptScore W3042804201C194198291 @default.
- W3042804201 hasConceptScore W3042804201C198043062 @default.
- W3042804201 hasConceptScore W3042804201C202444582 @default.
- W3042804201 hasConceptScore W3042804201C26546657 @default.
- W3042804201 hasConceptScore W3042804201C28235433 @default.
- W3042804201 hasConceptScore W3042804201C33676613 @default.
- W3042804201 hasConceptScore W3042804201C33923547 @default.
- W3042804201 hasConceptScore W3042804201C34388435 @default.
- W3042804201 hasConceptScore W3042804201C40636538 @default.
- W3042804201 hasConceptScore W3042804201C60933471 @default.
- W3042804201 hasConceptScore W3042804201C80661125 @default.
- W3042804201 hasConceptScore W3042804201C90377204 @default.
- W3042804201 hasConceptScore W3042804201C95341145 @default.
- W3042804201 hasLocation W30428042011 @default.
- W3042804201 hasLocation W30428042012 @default.
- W3042804201 hasLocation W30428042013 @default.
- W3042804201 hasOpenAccess W3042804201 @default.
- W3042804201 hasPrimaryLocation W30428042011 @default.
- W3042804201 hasRelatedWork W2074458584 @default.
- W3042804201 hasRelatedWork W2149479206 @default.
- W3042804201 hasRelatedWork W2157707209 @default.
- W3042804201 hasRelatedWork W2949209221 @default.
- W3042804201 hasRelatedWork W3100917851 @default.
- W3042804201 hasRelatedWork W3131713619 @default.
- W3042804201 hasRelatedWork W3139576154 @default.
- W3042804201 hasRelatedWork W4288096853 @default.
- W3042804201 hasRelatedWork W4289644853 @default.
- W3042804201 hasRelatedWork W4299071020 @default.
- W3042804201 isParatext "false" @default.
- W3042804201 isRetracted "false" @default.
- W3042804201 magId "3042804201" @default.
- W3042804201 workType "book-chapter" @default.