Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042827706> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W3042827706 abstract "With the tremendous increase in the amount of data being generated from variety of sources there is a need of efficient data storage and processing techniques. Some of the sources generating this large amount of data are Weather Sensors, Scientific experiments, etc. This huge voluminous data is termed as BigData. Due to ever-increasing amount of data there is a demand for faster data ingestion and processing. Apache Spark, a dominant processing tool is a publicly available platform for processing outsized data and is mostly intended for iterative machine learning jobs. In this study, an integrated approach i.e., Spark MLlib Clustering on batch weather data stored in Cassandra database is proposed. This helps to analyze our data into number of Clusters which is required and useful for further examination of data. The main idea of this study is to evaluate Batch Processing performance of an integrated approach with two popular clustering algorithms." @default.
- W3042827706 created "2020-07-23" @default.
- W3042827706 creator A5023383135 @default.
- W3042827706 creator A5029126874 @default.
- W3042827706 date "2020-01-01" @default.
- W3042827706 modified "2023-09-26" @default.
- W3042827706 title "Performance Analysis of Apache Spark MLlib Clustering on Batch Data Stored in Cassandra" @default.
- W3042827706 cites W2630720134 @default.
- W3042827706 cites W2782919601 @default.
- W3042827706 cites W2782959932 @default.
- W3042827706 cites W2809876073 @default.
- W3042827706 doi "https://doi.org/10.1007/978-3-030-46939-9_6" @default.
- W3042827706 hasPublicationYear "2020" @default.
- W3042827706 type Work @default.
- W3042827706 sameAs 3042827706 @default.
- W3042827706 citedByCount "0" @default.
- W3042827706 crossrefType "book-chapter" @default.
- W3042827706 hasAuthorship W3042827706A5023383135 @default.
- W3042827706 hasAuthorship W3042827706A5029126874 @default.
- W3042827706 hasConcept C111919701 @default.
- W3042827706 hasConcept C119857082 @default.
- W3042827706 hasConcept C124101348 @default.
- W3042827706 hasConcept C138827492 @default.
- W3042827706 hasConcept C172658912 @default.
- W3042827706 hasConcept C199360897 @default.
- W3042827706 hasConcept C2781215313 @default.
- W3042827706 hasConcept C41008148 @default.
- W3042827706 hasConcept C73555534 @default.
- W3042827706 hasConcept C75684735 @default.
- W3042827706 hasConcept C77088390 @default.
- W3042827706 hasConceptScore W3042827706C111919701 @default.
- W3042827706 hasConceptScore W3042827706C119857082 @default.
- W3042827706 hasConceptScore W3042827706C124101348 @default.
- W3042827706 hasConceptScore W3042827706C138827492 @default.
- W3042827706 hasConceptScore W3042827706C172658912 @default.
- W3042827706 hasConceptScore W3042827706C199360897 @default.
- W3042827706 hasConceptScore W3042827706C2781215313 @default.
- W3042827706 hasConceptScore W3042827706C41008148 @default.
- W3042827706 hasConceptScore W3042827706C73555534 @default.
- W3042827706 hasConceptScore W3042827706C75684735 @default.
- W3042827706 hasConceptScore W3042827706C77088390 @default.
- W3042827706 hasLocation W30428277061 @default.
- W3042827706 hasOpenAccess W3042827706 @default.
- W3042827706 hasPrimaryLocation W30428277061 @default.
- W3042827706 hasRelatedWork W14983537 @default.
- W3042827706 hasRelatedWork W1892674 @default.
- W3042827706 hasRelatedWork W4318186 @default.
- W3042827706 hasRelatedWork W4480341 @default.
- W3042827706 hasRelatedWork W5343053 @default.
- W3042827706 hasRelatedWork W714627 @default.
- W3042827706 hasRelatedWork W7857478 @default.
- W3042827706 hasRelatedWork W8551127 @default.
- W3042827706 hasRelatedWork W9610824 @default.
- W3042827706 hasRelatedWork W14765669 @default.
- W3042827706 isParatext "false" @default.
- W3042827706 isRetracted "false" @default.
- W3042827706 magId "3042827706" @default.
- W3042827706 workType "book-chapter" @default.