Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042862364> ?p ?o ?g. }
- W3042862364 endingPage "5135" @default.
- W3042862364 startingPage "5135" @default.
- W3042862364 abstract "As air pollution becomes highly focused in China, the accurate identification of its influencing factors is critical for achieving effective control and targeted environmental governance. Land-use distribution is one of the key factors affecting air quality, and research on the impact of land-use distribution on air pollution has drawn wide attention. However, considerable studies have mostly used linear regression models, which fail to capture the nonlinear effects of land-use distribution on PM2.5 (fine particulate matter with a diameter less than or equal to 2.5 microns) and to show how impacts on PM2.5 vary with land-use magnitudes. In addition, related studies have generally focused on annual analyses, ignoring the seasonal variability of the impact of land-use distribution on PM2.5, thus leading to possible estimation biases for PM2.5. This study was designed to address these issues and assess the impacts of land-use distribution on PM2.5 in Weifang, China. A machine learning statistical model, the boosted regression tree (BRT), was applied to measure nonlinear effects of land-use distribution on PM2.5, capture how land-use magnitude impacts PM2.5 across different seasons, and explore the policy implications for urban planning. The main conclusions are that the air quality will significantly improve with an increase in grassland and forest area, especially below 8% and 20%, respectively. When the distribution of construction land is greater than around 10%, the PM2.5 pollution can be seriously substantially increased with the increment of their areas. The impact of gardens and farmland presents seasonal characteristics. It is noted that as the weather becomes colder, the inhibitory effect of vegetation distribution on the PM2.5 concentration gradually decreases, while the positive impacts of artificial surface distributions, such as construction land and roads, are aggravated because leaves drop off in autumn (September–November) and winter (December–February). According to the findings of this study, it is recommended that Weifang should strengthen pollution control in winter, for instance, expand the coverage areas of evergreen vegetation like Pinus bungeana Zucc. and Euonymus japonicus Thunb, and increase the width and numbers of branches connecting different main roads. The findings also provide quantitative and optimal land-use planning and strategies to minimize PM2.5 pollution, referring to the status of regional urbanization and greening construction." @default.
- W3042862364 created "2020-07-23" @default.
- W3042862364 creator A5005698938 @default.
- W3042862364 creator A5012024697 @default.
- W3042862364 creator A5057396352 @default.
- W3042862364 creator A5059967200 @default.
- W3042862364 creator A5076403164 @default.
- W3042862364 date "2020-07-16" @default.
- W3042862364 modified "2023-10-13" @default.
- W3042862364 title "Investigation of the Impact of Land-Use Distribution on PM2.5 in Weifang: Seasonal Variations" @default.
- W3042862364 cites W1471436312 @default.
- W3042862364 cites W1963998078 @default.
- W3042862364 cites W1972993779 @default.
- W3042862364 cites W2005905671 @default.
- W3042862364 cites W2008870032 @default.
- W3042862364 cites W2057462398 @default.
- W3042862364 cites W2075125986 @default.
- W3042862364 cites W2135695572 @default.
- W3042862364 cites W2166934384 @default.
- W3042862364 cites W2284484756 @default.
- W3042862364 cites W2494028744 @default.
- W3042862364 cites W2528619925 @default.
- W3042862364 cites W2588050314 @default.
- W3042862364 cites W2608460809 @default.
- W3042862364 cites W2735239992 @default.
- W3042862364 cites W2788693790 @default.
- W3042862364 cites W2793762636 @default.
- W3042862364 cites W2801483172 @default.
- W3042862364 cites W2807774072 @default.
- W3042862364 cites W2883931985 @default.
- W3042862364 cites W2888327598 @default.
- W3042862364 cites W2888554982 @default.
- W3042862364 cites W2895092816 @default.
- W3042862364 cites W2895630384 @default.
- W3042862364 cites W2896856450 @default.
- W3042862364 cites W2907715436 @default.
- W3042862364 cites W2919923876 @default.
- W3042862364 cites W2970253514 @default.
- W3042862364 cites W2979227657 @default.
- W3042862364 cites W2979504203 @default.
- W3042862364 cites W2990070241 @default.
- W3042862364 cites W3017258315 @default.
- W3042862364 cites W830898595 @default.
- W3042862364 doi "https://doi.org/10.3390/ijerph17145135" @default.
- W3042862364 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7400403" @default.
- W3042862364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32708629" @default.
- W3042862364 hasPublicationYear "2020" @default.
- W3042862364 type Work @default.
- W3042862364 sameAs 3042862364 @default.
- W3042862364 citedByCount "13" @default.
- W3042862364 countsByYear W30428623642021 @default.
- W3042862364 countsByYear W30428623642022 @default.
- W3042862364 countsByYear W30428623642023 @default.
- W3042862364 crossrefType "journal-article" @default.
- W3042862364 hasAuthorship W3042862364A5005698938 @default.
- W3042862364 hasAuthorship W3042862364A5012024697 @default.
- W3042862364 hasAuthorship W3042862364A5057396352 @default.
- W3042862364 hasAuthorship W3042862364A5059967200 @default.
- W3042862364 hasAuthorship W3042862364A5076403164 @default.
- W3042862364 hasBestOaLocation W30428623641 @default.
- W3042862364 hasConcept C107826830 @default.
- W3042862364 hasConcept C110121322 @default.
- W3042862364 hasConcept C126314574 @default.
- W3042862364 hasConcept C134306372 @default.
- W3042862364 hasConcept C153294291 @default.
- W3042862364 hasConcept C18903297 @default.
- W3042862364 hasConcept C205649164 @default.
- W3042862364 hasConcept C24245907 @default.
- W3042862364 hasConcept C33923547 @default.
- W3042862364 hasConcept C39432304 @default.
- W3042862364 hasConcept C4792198 @default.
- W3042862364 hasConcept C521259446 @default.
- W3042862364 hasConcept C559116025 @default.
- W3042862364 hasConcept C86803240 @default.
- W3042862364 hasConceptScore W3042862364C107826830 @default.
- W3042862364 hasConceptScore W3042862364C110121322 @default.
- W3042862364 hasConceptScore W3042862364C126314574 @default.
- W3042862364 hasConceptScore W3042862364C134306372 @default.
- W3042862364 hasConceptScore W3042862364C153294291 @default.
- W3042862364 hasConceptScore W3042862364C18903297 @default.
- W3042862364 hasConceptScore W3042862364C205649164 @default.
- W3042862364 hasConceptScore W3042862364C24245907 @default.
- W3042862364 hasConceptScore W3042862364C33923547 @default.
- W3042862364 hasConceptScore W3042862364C39432304 @default.
- W3042862364 hasConceptScore W3042862364C4792198 @default.
- W3042862364 hasConceptScore W3042862364C521259446 @default.
- W3042862364 hasConceptScore W3042862364C559116025 @default.
- W3042862364 hasConceptScore W3042862364C86803240 @default.
- W3042862364 hasFunder F4320335595 @default.
- W3042862364 hasFunder F4320335777 @default.
- W3042862364 hasIssue "14" @default.
- W3042862364 hasLocation W30428623641 @default.
- W3042862364 hasLocation W30428623642 @default.
- W3042862364 hasLocation W30428623643 @default.
- W3042862364 hasOpenAccess W3042862364 @default.
- W3042862364 hasPrimaryLocation W30428623641 @default.
- W3042862364 hasRelatedWork W1603912562 @default.
- W3042862364 hasRelatedWork W2066546759 @default.