Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042875024> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3042875024 endingPage "226" @default.
- W3042875024 startingPage "206" @default.
- W3042875024 abstract "Machine learning has a long history of success in the pharmaceutical sector, helping discover and optimize new drugs and predicting useful physicochemical properties like aqueous solubility. Materials science has embraced similar approaches and transferred useful technologies from the pharmaceutical sector. Although materials are more complex than small organic molecules, ML approaches have shown impressive results in predicting the properties of materials for application in diverse fields like 2D photonics, porous materials for energy and environmental applications, and in the development of biomaterials and regenerative medicine therapies. Here, we summarize some of the challenges in ML modelling of materials and highlight some exciting recent applications." @default.
- W3042875024 created "2020-07-23" @default.
- W3042875024 creator A5076173216 @default.
- W3042875024 date "2020-07-21" @default.
- W3042875024 modified "2023-10-09" @default.
- W3042875024 title "Machine Learning at the (Nano)materials-biology Interface" @default.
- W3042875024 cites W1600072768 @default.
- W3042875024 cites W1976201655 @default.
- W3042875024 cites W1978330325 @default.
- W3042875024 cites W1990385031 @default.
- W3042875024 cites W1994124890 @default.
- W3042875024 cites W2008947010 @default.
- W3042875024 cites W2017827403 @default.
- W3042875024 cites W2041318737 @default.
- W3042875024 cites W2047253239 @default.
- W3042875024 cites W2049746520 @default.
- W3042875024 cites W2064306342 @default.
- W3042875024 cites W2070972099 @default.
- W3042875024 cites W2097122306 @default.
- W3042875024 cites W2115682365 @default.
- W3042875024 cites W2138891267 @default.
- W3042875024 cites W2157342932 @default.
- W3042875024 cites W2160923685 @default.
- W3042875024 cites W2162234852 @default.
- W3042875024 cites W2198766427 @default.
- W3042875024 cites W2213735563 @default.
- W3042875024 cites W2223809533 @default.
- W3042875024 cites W2299433787 @default.
- W3042875024 cites W2315837940 @default.
- W3042875024 cites W2330075235 @default.
- W3042875024 cites W2367226705 @default.
- W3042875024 cites W2383894479 @default.
- W3042875024 cites W2551377153 @default.
- W3042875024 cites W2593134243 @default.
- W3042875024 cites W2602890096 @default.
- W3042875024 cites W2621738901 @default.
- W3042875024 cites W2772316334 @default.
- W3042875024 cites W2883583109 @default.
- W3042875024 cites W2894119179 @default.
- W3042875024 cites W2898086794 @default.
- W3042875024 cites W2898844932 @default.
- W3042875024 cites W2902762889 @default.
- W3042875024 cites W2910636130 @default.
- W3042875024 cites W2921963218 @default.
- W3042875024 cites W2942200690 @default.
- W3042875024 cites W2944854053 @default.
- W3042875024 cites W2945288028 @default.
- W3042875024 cites W2949064041 @default.
- W3042875024 cites W2968071222 @default.
- W3042875024 cites W2990458109 @default.
- W3042875024 cites W3105540415 @default.
- W3042875024 cites W78181191 @default.
- W3042875024 doi "https://doi.org/10.1039/9781839160233-00206" @default.
- W3042875024 hasPublicationYear "2020" @default.
- W3042875024 type Work @default.
- W3042875024 sameAs 3042875024 @default.
- W3042875024 citedByCount "1" @default.
- W3042875024 countsByYear W30428750242021 @default.
- W3042875024 crossrefType "book-chapter" @default.
- W3042875024 hasAuthorship W3042875024A5076173216 @default.
- W3042875024 hasConcept C113843644 @default.
- W3042875024 hasConcept C127413603 @default.
- W3042875024 hasConcept C159985019 @default.
- W3042875024 hasConcept C171250308 @default.
- W3042875024 hasConcept C183696295 @default.
- W3042875024 hasConcept C192562407 @default.
- W3042875024 hasConcept C196806460 @default.
- W3042875024 hasConcept C2780357685 @default.
- W3042875024 hasConcept C28413391 @default.
- W3042875024 hasConcept C41008148 @default.
- W3042875024 hasConceptScore W3042875024C113843644 @default.
- W3042875024 hasConceptScore W3042875024C127413603 @default.
- W3042875024 hasConceptScore W3042875024C159985019 @default.
- W3042875024 hasConceptScore W3042875024C171250308 @default.
- W3042875024 hasConceptScore W3042875024C183696295 @default.
- W3042875024 hasConceptScore W3042875024C192562407 @default.
- W3042875024 hasConceptScore W3042875024C196806460 @default.
- W3042875024 hasConceptScore W3042875024C2780357685 @default.
- W3042875024 hasConceptScore W3042875024C28413391 @default.
- W3042875024 hasConceptScore W3042875024C41008148 @default.
- W3042875024 hasLocation W30428750241 @default.
- W3042875024 hasOpenAccess W3042875024 @default.
- W3042875024 hasPrimaryLocation W30428750241 @default.
- W3042875024 hasRelatedWork W2064442881 @default.
- W3042875024 hasRelatedWork W2321826045 @default.
- W3042875024 hasRelatedWork W2327552339 @default.
- W3042875024 hasRelatedWork W2357906747 @default.
- W3042875024 hasRelatedWork W2366230866 @default.
- W3042875024 hasRelatedWork W2372895414 @default.
- W3042875024 hasRelatedWork W2417561032 @default.
- W3042875024 hasRelatedWork W2468844734 @default.
- W3042875024 hasRelatedWork W2618790979 @default.
- W3042875024 hasRelatedWork W2899084033 @default.
- W3042875024 isParatext "false" @default.
- W3042875024 isRetracted "false" @default.
- W3042875024 magId "3042875024" @default.
- W3042875024 workType "book-chapter" @default.