Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042881071> ?p ?o ?g. }
- W3042881071 endingPage "3669" @default.
- W3042881071 startingPage "3669" @default.
- W3042881071 abstract "Sustainable development can no longer neglect the growth of those technologies that look at the recovery of any energy waste in industrial processes. For example, in almost every industrial plant it happens that pressure energy is wasted in throttling devices for pressure and flow control needs. Clearly, the recovery of this wasted energy can be considered as an opportunity to reach not only a higher plant energy efficiency, but also the reduction of the plant Operating Expenditures (OpEx). In recent years, it is getting common to replace throttling valves with turbine-based systems (tuboexpander) thus getting both the pressure control and the energy recovery, for instance, producing electricity. However, the wide range of possible operating conditions, technical requirements and design constrains determine highly customized constructions of these turboexpanders. Furthermore, manufacturers are interested in tools enabling them to rapidly get the design of their products. For these reasons, in this work we propose an optimization design procedure, which is able to rapidly come to the design of the turboexpander taking into account all the fluid dynamic and technical requirements, considering the already obtained achievements of the scientific community in terms of theory, experiments and numeric. In order to validate the proposed methodology, the case of a single stage axial impulse turbine is considered. However, the methodology extension to other turbomachines is straightforward. Specifically, the design requirements were expressed in terms of maximum allowable expansion ratio and flow coefficient, while achieving at least a minimum assigned value of the turbine loading factor. Actually, it is an iterative procedure, carried out up to convergence, made of the following steps: (i) the different loss coefficients in the turbine are set-up in order to estimate its main geometric parameters by means of a one dimensional (1D) study; (ii) the 2D blade profiles are designed by means of an optimization algorithm based on a “viscous/inviscid interaction” technique; (iii) 3D Computational Fluid Dynamic (CFD) simulations are then carried out and the loss coefficients are computed and updated. Regarding the CFD simulations, a preliminary model assessment has been performed against a reference case, chosen in the literature. The above-mentioned procedure is implemented in such a way to speed up the convergence, coupling analytical integral models of the 1D/2D approach with accurate local solutions of the finite-volume 3D approach. The method is shown to be able to achieve consistent results, allowing the determination of a turbine design respectful of the requirements more than doubling the minimum required loading factor." @default.
- W3042881071 created "2020-07-23" @default.
- W3042881071 creator A5010688255 @default.
- W3042881071 creator A5014719343 @default.
- W3042881071 creator A5048016670 @default.
- W3042881071 creator A5059874332 @default.
- W3042881071 creator A5072034443 @default.
- W3042881071 creator A5074409065 @default.
- W3042881071 creator A5090216328 @default.
- W3042881071 date "2020-07-16" @default.
- W3042881071 modified "2023-10-16" @default.
- W3042881071 title "Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications" @default.
- W3042881071 cites W1987110381 @default.
- W3042881071 cites W1997348363 @default.
- W3042881071 cites W2000751404 @default.
- W3042881071 cites W2005510761 @default.
- W3042881071 cites W2023069702 @default.
- W3042881071 cites W2028452880 @default.
- W3042881071 cites W2069291016 @default.
- W3042881071 cites W2082505812 @default.
- W3042881071 cites W2083953619 @default.
- W3042881071 cites W2088188074 @default.
- W3042881071 cites W2165937604 @default.
- W3042881071 cites W2200036290 @default.
- W3042881071 cites W2285733955 @default.
- W3042881071 cites W2327593788 @default.
- W3042881071 cites W2415752461 @default.
- W3042881071 cites W2517121739 @default.
- W3042881071 cites W2523576561 @default.
- W3042881071 cites W2531802566 @default.
- W3042881071 cites W2570644959 @default.
- W3042881071 cites W2586070144 @default.
- W3042881071 cites W2620581314 @default.
- W3042881071 cites W2620839438 @default.
- W3042881071 cites W2754329754 @default.
- W3042881071 cites W2755016278 @default.
- W3042881071 cites W2755681998 @default.
- W3042881071 cites W2755736048 @default.
- W3042881071 cites W2756720143 @default.
- W3042881071 cites W2778498278 @default.
- W3042881071 cites W2790046122 @default.
- W3042881071 cites W2790197215 @default.
- W3042881071 cites W2791527365 @default.
- W3042881071 cites W2792224341 @default.
- W3042881071 cites W2806981569 @default.
- W3042881071 cites W2899171537 @default.
- W3042881071 cites W2916302553 @default.
- W3042881071 cites W2918016985 @default.
- W3042881071 cites W2953407423 @default.
- W3042881071 doi "https://doi.org/10.3390/en13143669" @default.
- W3042881071 hasPublicationYear "2020" @default.
- W3042881071 type Work @default.
- W3042881071 sameAs 3042881071 @default.
- W3042881071 citedByCount "5" @default.
- W3042881071 countsByYear W30428810712021 @default.
- W3042881071 countsByYear W30428810712022 @default.
- W3042881071 crossrefType "journal-article" @default.
- W3042881071 hasAuthorship W3042881071A5010688255 @default.
- W3042881071 hasAuthorship W3042881071A5014719343 @default.
- W3042881071 hasAuthorship W3042881071A5048016670 @default.
- W3042881071 hasAuthorship W3042881071A5059874332 @default.
- W3042881071 hasAuthorship W3042881071A5072034443 @default.
- W3042881071 hasAuthorship W3042881071A5074409065 @default.
- W3042881071 hasAuthorship W3042881071A5090216328 @default.
- W3042881071 hasBestOaLocation W30428810711 @default.
- W3042881071 hasConcept C105795698 @default.
- W3042881071 hasConcept C119599485 @default.
- W3042881071 hasConcept C121332964 @default.
- W3042881071 hasConcept C127413603 @default.
- W3042881071 hasConcept C131097465 @default.
- W3042881071 hasConcept C141675481 @default.
- W3042881071 hasConcept C14572793 @default.
- W3042881071 hasConcept C163258240 @default.
- W3042881071 hasConcept C173061102 @default.
- W3042881071 hasConcept C186370098 @default.
- W3042881071 hasConcept C188573790 @default.
- W3042881071 hasConcept C200601418 @default.
- W3042881071 hasConcept C21880701 @default.
- W3042881071 hasConcept C22762622 @default.
- W3042881071 hasConcept C2778449969 @default.
- W3042881071 hasConcept C33923547 @default.
- W3042881071 hasConcept C41008148 @default.
- W3042881071 hasConcept C423512 @default.
- W3042881071 hasConcept C5979214 @default.
- W3042881071 hasConcept C62520636 @default.
- W3042881071 hasConcept C78519656 @default.
- W3042881071 hasConcept C96261405 @default.
- W3042881071 hasConceptScore W3042881071C105795698 @default.
- W3042881071 hasConceptScore W3042881071C119599485 @default.
- W3042881071 hasConceptScore W3042881071C121332964 @default.
- W3042881071 hasConceptScore W3042881071C127413603 @default.
- W3042881071 hasConceptScore W3042881071C131097465 @default.
- W3042881071 hasConceptScore W3042881071C141675481 @default.
- W3042881071 hasConceptScore W3042881071C14572793 @default.
- W3042881071 hasConceptScore W3042881071C163258240 @default.
- W3042881071 hasConceptScore W3042881071C173061102 @default.
- W3042881071 hasConceptScore W3042881071C186370098 @default.
- W3042881071 hasConceptScore W3042881071C188573790 @default.