Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042909640> ?p ?o ?g. }
- W3042909640 endingPage "446" @default.
- W3042909640 startingPage "430" @default.
- W3042909640 abstract "Plant stress is one of major issues that cause significant economic loss for growers. The labor-intensive conventional methods for identifying the stressed plants constrain their applications. To address this issue, rapid methods are in urgent needs. Developments of advanced sensing and machine learning techniques trigger revolutions for precision agriculture based on deep learning and big data. In this paper, we reviewed the latest deep learning approaches pertinent to the image analysis of crop stress diagnosis. We compiled the current sensor tools and deep learning principles involved in plant stress phenotyping. In addition, we reviewed a variety of deep learning applications/functions with plant stress imaging, including classification, object detection, and segmentation, of which are closely intertwined. Furthermore, we summarized and discussed the current challenges and future development avenues in plant phenotyping." @default.
- W3042909640 created "2020-07-23" @default.
- W3042909640 creator A5000917454 @default.
- W3042909640 creator A5045939935 @default.
- W3042909640 creator A5055827219 @default.
- W3042909640 creator A5074708328 @default.
- W3042909640 creator A5080088990 @default.
- W3042909640 date "2020-07-14" @default.
- W3042909640 modified "2023-09-27" @default.
- W3042909640 title "Deep Learning Application in Plant Stress Imaging: A Review" @default.
- W3042909640 cites W1579871717 @default.
- W3042909640 cites W1996801667 @default.
- W3042909640 cites W2045732268 @default.
- W3042909640 cites W2067877300 @default.
- W3042909640 cites W2073754472 @default.
- W3042909640 cites W2090813402 @default.
- W3042909640 cites W2102017823 @default.
- W3042909640 cites W2103959917 @default.
- W3042909640 cites W2121493036 @default.
- W3042909640 cites W2131047206 @default.
- W3042909640 cites W2176632874 @default.
- W3042909640 cites W2261689926 @default.
- W3042909640 cites W2264557603 @default.
- W3042909640 cites W2473156356 @default.
- W3042909640 cites W2508161609 @default.
- W3042909640 cites W2614438169 @default.
- W3042909640 cites W2730129132 @default.
- W3042909640 cites W2733608569 @default.
- W3042909640 cites W2737050655 @default.
- W3042909640 cites W2753403518 @default.
- W3042909640 cites W2758216428 @default.
- W3042909640 cites W2764276830 @default.
- W3042909640 cites W2774245783 @default.
- W3042909640 cites W2776705292 @default.
- W3042909640 cites W2789255992 @default.
- W3042909640 cites W2790979755 @default.
- W3042909640 cites W2791303772 @default.
- W3042909640 cites W2795016359 @default.
- W3042909640 cites W2799437918 @default.
- W3042909640 cites W2886555888 @default.
- W3042909640 cites W2887311010 @default.
- W3042909640 cites W2891667148 @default.
- W3042909640 cites W2897228234 @default.
- W3042909640 cites W2899287754 @default.
- W3042909640 cites W2906321005 @default.
- W3042909640 cites W2906494726 @default.
- W3042909640 cites W2911433502 @default.
- W3042909640 cites W2912398505 @default.
- W3042909640 cites W2913766929 @default.
- W3042909640 cites W2914064754 @default.
- W3042909640 cites W2915159483 @default.
- W3042909640 cites W2922028018 @default.
- W3042909640 cites W2922338032 @default.
- W3042909640 cites W2943036395 @default.
- W3042909640 cites W2946802127 @default.
- W3042909640 cites W2947521956 @default.
- W3042909640 cites W2954187519 @default.
- W3042909640 cites W2954934222 @default.
- W3042909640 cites W2955365692 @default.
- W3042909640 cites W2955793676 @default.
- W3042909640 cites W2962949934 @default.
- W3042909640 cites W2977144840 @default.
- W3042909640 cites W2980270541 @default.
- W3042909640 cites W2990308201 @default.
- W3042909640 cites W2991310200 @default.
- W3042909640 cites W2995726119 @default.
- W3042909640 cites W2998829203 @default.
- W3042909640 cites W3022746210 @default.
- W3042909640 cites W3026266934 @default.
- W3042909640 cites W3100931193 @default.
- W3042909640 doi "https://doi.org/10.3390/agriengineering2030029" @default.
- W3042909640 hasPublicationYear "2020" @default.
- W3042909640 type Work @default.
- W3042909640 sameAs 3042909640 @default.
- W3042909640 citedByCount "44" @default.
- W3042909640 countsByYear W30429096402020 @default.
- W3042909640 countsByYear W30429096402021 @default.
- W3042909640 countsByYear W30429096402022 @default.
- W3042909640 countsByYear W30429096402023 @default.
- W3042909640 crossrefType "journal-article" @default.
- W3042909640 hasAuthorship W3042909640A5000917454 @default.
- W3042909640 hasAuthorship W3042909640A5045939935 @default.
- W3042909640 hasAuthorship W3042909640A5055827219 @default.
- W3042909640 hasAuthorship W3042909640A5074708328 @default.
- W3042909640 hasAuthorship W3042909640A5080088990 @default.
- W3042909640 hasBestOaLocation W30429096401 @default.
- W3042909640 hasConcept C108583219 @default.
- W3042909640 hasConcept C119857082 @default.
- W3042909640 hasConcept C124101348 @default.
- W3042909640 hasConcept C136197465 @default.
- W3042909640 hasConcept C138885662 @default.
- W3042909640 hasConcept C154945302 @default.
- W3042909640 hasConcept C21036866 @default.
- W3042909640 hasConcept C2522767166 @default.
- W3042909640 hasConcept C41008148 @default.
- W3042909640 hasConcept C41895202 @default.
- W3042909640 hasConcept C75684735 @default.
- W3042909640 hasConcept C89600930 @default.