Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042912039> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3042912039 abstract "This dissertation investigates the feasibility of applying Artificial Neural Networks (ANN) to problems of weapon system evaluation, and presents a Radial-Basis Function (RBF) Network as an ideal neural-net architecture to approximate the value function of a complex system such as combat aircraft, an approach perceived different from traditional MCDM problems for its intrinsic characteristics of weapon system engineering. The advantage of RBI against the traditional Multi-Layer Perceptron (MLP) is the relatively little amount of sample data required to train the network, which performs a more consistent and coherent prediction. A case study involving the selection of fighter aircraft is discussed with reference to the construction and validation of neural nets. The experimental results indicate that RBF yields a robust and simple-architecture solution, while the disadvantage is its heavy reliance on the data of a holistic score that can be treated as the output of neural nets employed to predict aircraft's effectiveness. The need for defence investment decisions of cardinal values rather than ordinal ranking motivates this study. MCDM methodologies including AMP, UTA, and PROMFETHEE II are compared with the ANN method. Correlations are examined before the MCDM analysis is performed, and a two-dimensional biplot plane is established to elucidate the information pertaining to alternatives and criteria. Among the compared MCDM methods, the logic of UTA coincides with that of RBF approach proposed in this dissertation, while UTA employs linear programming and RBF uses Gaussian transformation with regularisation theory The results show that RBF can accurately predict the numeric value of alternatives to interpret their operational effectiveness, and prevent the ill-condition when applying MLP. As to the reliability of method, the investigations of RBF satisfy both correspondence and coherence criteria, which demonstrates it as an economic and reliable tool for both alternative selection and concept design." @default.
- W3042912039 created "2020-07-23" @default.
- W3042912039 creator A5021156023 @default.
- W3042912039 date "2003-01-01" @default.
- W3042912039 modified "2023-09-24" @default.
- W3042912039 title "Combat aircraft effectiveness prediction by artificial neural networks" @default.
- W3042912039 hasPublicationYear "2003" @default.
- W3042912039 type Work @default.
- W3042912039 sameAs 3042912039 @default.
- W3042912039 citedByCount "0" @default.
- W3042912039 crossrefType "dissertation" @default.
- W3042912039 hasAuthorship W3042912039A5021156023 @default.
- W3042912039 hasConcept C104317684 @default.
- W3042912039 hasConcept C11105738 @default.
- W3042912039 hasConcept C119857082 @default.
- W3042912039 hasConcept C124101348 @default.
- W3042912039 hasConcept C127413603 @default.
- W3042912039 hasConcept C14036430 @default.
- W3042912039 hasConcept C154945302 @default.
- W3042912039 hasConcept C185592680 @default.
- W3042912039 hasConcept C189430467 @default.
- W3042912039 hasConcept C204241405 @default.
- W3042912039 hasConcept C41008148 @default.
- W3042912039 hasConcept C42475967 @default.
- W3042912039 hasConcept C50644808 @default.
- W3042912039 hasConcept C55493867 @default.
- W3042912039 hasConcept C60908668 @default.
- W3042912039 hasConcept C78458016 @default.
- W3042912039 hasConcept C86803240 @default.
- W3042912039 hasConcept C98856871 @default.
- W3042912039 hasConceptScore W3042912039C104317684 @default.
- W3042912039 hasConceptScore W3042912039C11105738 @default.
- W3042912039 hasConceptScore W3042912039C119857082 @default.
- W3042912039 hasConceptScore W3042912039C124101348 @default.
- W3042912039 hasConceptScore W3042912039C127413603 @default.
- W3042912039 hasConceptScore W3042912039C14036430 @default.
- W3042912039 hasConceptScore W3042912039C154945302 @default.
- W3042912039 hasConceptScore W3042912039C185592680 @default.
- W3042912039 hasConceptScore W3042912039C189430467 @default.
- W3042912039 hasConceptScore W3042912039C204241405 @default.
- W3042912039 hasConceptScore W3042912039C41008148 @default.
- W3042912039 hasConceptScore W3042912039C42475967 @default.
- W3042912039 hasConceptScore W3042912039C50644808 @default.
- W3042912039 hasConceptScore W3042912039C55493867 @default.
- W3042912039 hasConceptScore W3042912039C60908668 @default.
- W3042912039 hasConceptScore W3042912039C78458016 @default.
- W3042912039 hasConceptScore W3042912039C86803240 @default.
- W3042912039 hasConceptScore W3042912039C98856871 @default.
- W3042912039 hasLocation W30429120391 @default.
- W3042912039 hasOpenAccess W3042912039 @default.
- W3042912039 hasPrimaryLocation W30429120391 @default.
- W3042912039 hasRelatedWork W1793927692 @default.
- W3042912039 hasRelatedWork W1855881822 @default.
- W3042912039 hasRelatedWork W188159048 @default.
- W3042912039 hasRelatedWork W194452687 @default.
- W3042912039 hasRelatedWork W1980575564 @default.
- W3042912039 hasRelatedWork W1986632993 @default.
- W3042912039 hasRelatedWork W2026787269 @default.
- W3042912039 hasRelatedWork W2040177776 @default.
- W3042912039 hasRelatedWork W2099613457 @default.
- W3042912039 hasRelatedWork W2151121740 @default.
- W3042912039 hasRelatedWork W2170045675 @default.
- W3042912039 hasRelatedWork W2298793391 @default.
- W3042912039 hasRelatedWork W2761929139 @default.
- W3042912039 hasRelatedWork W2908131432 @default.
- W3042912039 hasRelatedWork W2990361595 @default.
- W3042912039 hasRelatedWork W3034662445 @default.
- W3042912039 hasRelatedWork W3139890566 @default.
- W3042912039 hasRelatedWork W3166126017 @default.
- W3042912039 hasRelatedWork W1657317714 @default.
- W3042912039 hasRelatedWork W2187122038 @default.
- W3042912039 isParatext "false" @default.
- W3042912039 isRetracted "false" @default.
- W3042912039 magId "3042912039" @default.
- W3042912039 workType "dissertation" @default.