Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042925996> ?p ?o ?g. }
- W3042925996 endingPage "734" @default.
- W3042925996 startingPage "727" @default.
- W3042925996 abstract "Apicomplexan parasites evolved from a phototrophic ancestor. Parasitism evolved multiple times in the Apicomplexa and in Apicomplexa-like protists. Chromerid algae are the closest known phototrophic relatives of parasitic Apicomplexa. The chromerid Chromera velia is a free-living alga that can infect coral larvae and live like a parasite. Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite. Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite. a group of alveolate protists containing obligate parasites of animals, including humans. They include, for example, the causative agents of malaria (Plasmodium spp.), babesiosis (Babesia spp.), toxoplasmosis (Toxoplasma gondii), and cryptosporidiosis (Cryptosporidium spp.). the nonphotosynthetic relic plastid present in most apicomplexans. It is surrounded by four membranes, suggesting its origin in a complex endosymbiotic event, and it hosts metabolic pathways that are essential for parasite survival. The presence of the plastid suggests phototrophic ancestry of these parasites. Accumulating evidence shows that the apicoplast originated in a rhodophyte (or rhodophyte-derived) endosymbiont. a group of algae closely related (together with the nonphotosynthetic predatory colpodellids) to the parasitic Apicomplexa. They contain a fully photosynthetic plastid, surrounded by four membranes, that lacks chlorophyll c, which is usually found in rhodophyte-derived complex plastids. eukaryotic algae outside the Archaeplastida – such as stramenopiles (e.g., diatoms, eustigmatophytes, chrysophytes), alveolates (dinoflagellates, chromerids, and apicomplexans), rhizarians (chlorarachniophytes), haptophytes, cryptophytes, and euglenophytes – contain plastids surrounded by more than two membranes, usually three or four. Such plastid organelles originate in secondary, tertiary, or higher order eukaryote-to-eukaryote endosymbiotic events, involving a eukaryotic host and various eukaryotic algal endosymbionts with a primary or higher order plastid (chlorophytes, rhodophytes, stramenopiles, haptophytes, cryptophytes). Given the ongoing intense debate about the specific origin of plastids in secondary or higher order endosymbioses, I prefer the term 'complex endosymbiosis' (complex plastid). marine and freshwater algae with a complex plastid; they constitute a sister group to the Apicomplexa. Dinoflagellates are known to display a high diversity of plastids originating in complex endosymbioses (such as secondary and tertiary endosymbioses), plastid replacements, serial endosymbioses, or even loss of the plastid. Various dinoflagellates can live as phototrophs, mixotrophs, heterotrophs, or parasites. a trophic mode combining phototrophy and various types of heterotrophy. a mixotrophic lifestyle combining phototrophy and parasitism." @default.
- W3042925996 created "2020-07-23" @default.
- W3042925996 creator A5022370191 @default.
- W3042925996 date "2020-09-01" @default.
- W3042925996 modified "2023-10-18" @default.
- W3042925996 title "Photoparasitism as an Intermediate State in the Evolution of Apicomplexan Parasites" @default.
- W3042925996 cites W1610439088 @default.
- W3042925996 cites W1963889669 @default.
- W3042925996 cites W1971771385 @default.
- W3042925996 cites W1973890144 @default.
- W3042925996 cites W1989596454 @default.
- W3042925996 cites W1995179961 @default.
- W3042925996 cites W1996116828 @default.
- W3042925996 cites W2009930873 @default.
- W3042925996 cites W2030087124 @default.
- W3042925996 cites W2035880729 @default.
- W3042925996 cites W2038608830 @default.
- W3042925996 cites W2049988471 @default.
- W3042925996 cites W2069097780 @default.
- W3042925996 cites W2077895518 @default.
- W3042925996 cites W2080184255 @default.
- W3042925996 cites W2096598890 @default.
- W3042925996 cites W2100109140 @default.
- W3042925996 cites W2105774333 @default.
- W3042925996 cites W2109485875 @default.
- W3042925996 cites W2116321100 @default.
- W3042925996 cites W2126046854 @default.
- W3042925996 cites W2127241727 @default.
- W3042925996 cites W2132176167 @default.
- W3042925996 cites W2142417866 @default.
- W3042925996 cites W2147043756 @default.
- W3042925996 cites W2150561065 @default.
- W3042925996 cites W2165234877 @default.
- W3042925996 cites W2210372845 @default.
- W3042925996 cites W2328896628 @default.
- W3042925996 cites W2334108059 @default.
- W3042925996 cites W2564747874 @default.
- W3042925996 cites W2739684409 @default.
- W3042925996 cites W2747635857 @default.
- W3042925996 cites W2753409843 @default.
- W3042925996 cites W2761370798 @default.
- W3042925996 cites W2782914881 @default.
- W3042925996 cites W2800916583 @default.
- W3042925996 cites W2802410324 @default.
- W3042925996 cites W2811420264 @default.
- W3042925996 cites W2890892726 @default.
- W3042925996 cites W2911289781 @default.
- W3042925996 cites W2931576698 @default.
- W3042925996 cites W2932012837 @default.
- W3042925996 cites W2949979602 @default.
- W3042925996 cites W2958743911 @default.
- W3042925996 cites W2967086628 @default.
- W3042925996 cites W2967373446 @default.
- W3042925996 cites W2967898111 @default.
- W3042925996 cites W3024741778 @default.
- W3042925996 cites W54989269 @default.
- W3042925996 doi "https://doi.org/10.1016/j.pt.2020.06.002" @default.
- W3042925996 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32680786" @default.
- W3042925996 hasPublicationYear "2020" @default.
- W3042925996 type Work @default.
- W3042925996 sameAs 3042925996 @default.
- W3042925996 citedByCount "11" @default.
- W3042925996 countsByYear W30429259962021 @default.
- W3042925996 countsByYear W30429259962022 @default.
- W3042925996 countsByYear W30429259962023 @default.
- W3042925996 crossrefType "journal-article" @default.
- W3042925996 hasAuthorship W3042925996A5022370191 @default.
- W3042925996 hasConcept C104317684 @default.
- W3042925996 hasConcept C126831891 @default.
- W3042925996 hasConcept C183688256 @default.
- W3042925996 hasConcept C18903297 @default.
- W3042925996 hasConcept C197322856 @default.
- W3042925996 hasConcept C203014093 @default.
- W3042925996 hasConcept C2778048844 @default.
- W3042925996 hasConcept C2778234367 @default.
- W3042925996 hasConcept C2778371730 @default.
- W3042925996 hasConcept C2781023229 @default.
- W3042925996 hasConcept C54355233 @default.
- W3042925996 hasConcept C59822182 @default.
- W3042925996 hasConcept C69305403 @default.
- W3042925996 hasConcept C86803240 @default.
- W3042925996 hasConcept C93829228 @default.
- W3042925996 hasConceptScore W3042925996C104317684 @default.
- W3042925996 hasConceptScore W3042925996C126831891 @default.
- W3042925996 hasConceptScore W3042925996C183688256 @default.
- W3042925996 hasConceptScore W3042925996C18903297 @default.
- W3042925996 hasConceptScore W3042925996C197322856 @default.
- W3042925996 hasConceptScore W3042925996C203014093 @default.
- W3042925996 hasConceptScore W3042925996C2778048844 @default.
- W3042925996 hasConceptScore W3042925996C2778234367 @default.
- W3042925996 hasConceptScore W3042925996C2778371730 @default.
- W3042925996 hasConceptScore W3042925996C2781023229 @default.
- W3042925996 hasConceptScore W3042925996C54355233 @default.
- W3042925996 hasConceptScore W3042925996C59822182 @default.
- W3042925996 hasConceptScore W3042925996C69305403 @default.
- W3042925996 hasConceptScore W3042925996C86803240 @default.
- W3042925996 hasConceptScore W3042925996C93829228 @default.
- W3042925996 hasFunder F4320321006 @default.