Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042933035> ?p ?o ?g. }
- W3042933035 endingPage "4046" @default.
- W3042933035 startingPage "4034" @default.
- W3042933035 abstract "Reconstruction of neuronal populations from ultra-scale optical microscopy (OM) images is essential to investigate neuronal circuits and brain mechanisms. The noises, low contrast, huge memory requirement, and high computational cost pose significant challenges in the neuronal population reconstruction. Recently, many studies have been conducted to extract neuron signals using deep neural networks (DNNs). However, training such DNNs usually relies on a huge amount of voxel-wise annotations in OM images, which are expensive in terms of both finance and labor. In this paper, we propose a novel framework for dense neuronal population reconstruction from ultra-scale images. To solve the problem of high cost in obtaining manual annotations for training DNNs, we propose a progressive learning scheme for neuronal population reconstruction (PLNPR) which does not require any manual annotations. Our PLNPR scheme consists of a traditional neuron tracing module and a deep segmentation network that mutually complement and progressively promote each other. To reconstruct dense neuronal populations from a terabyte-sized ultra-scale image, we introduce an automatic framework which adaptively traces neurons block by block and fuses fragmented neurites in overlapped regions continuously and smoothly. We build a dataset “VISoR-40” which consists of 40 large-scale OM image blocks from cortical regions of a mouse. Extensive experimental results on our VISoR-40 dataset and the public BigNeuron dataset demonstrate the effectiveness and superiority of our method on neuronal population reconstruction and single neuron reconstruction. Furthermore, we successfully apply our method to reconstruct dense neuronal populations from an ultra-scale mouse brain slice. The proposed adaptive block propagation and fusion strategies greatly improve the completeness of neurites in dense neuronal population reconstruction." @default.
- W3042933035 created "2020-07-23" @default.
- W3042933035 creator A5003217535 @default.
- W3042933035 creator A5008612863 @default.
- W3042933035 creator A5018606189 @default.
- W3042933035 creator A5029102289 @default.
- W3042933035 creator A5036359599 @default.
- W3042933035 creator A5037044309 @default.
- W3042933035 creator A5052610831 @default.
- W3042933035 creator A5068339381 @default.
- W3042933035 creator A5082727673 @default.
- W3042933035 creator A5091730842 @default.
- W3042933035 date "2020-12-01" @default.
- W3042933035 modified "2023-10-16" @default.
- W3042933035 title "Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning" @default.
- W3042933035 cites W1427337929 @default.
- W3042933035 cites W1508135620 @default.
- W3042933035 cites W1559344731 @default.
- W3042933035 cites W1587637157 @default.
- W3042933035 cites W1885626623 @default.
- W3042933035 cites W1969963182 @default.
- W3042933035 cites W1971167883 @default.
- W3042933035 cites W1997013306 @default.
- W3042933035 cites W1998874218 @default.
- W3042933035 cites W2011650974 @default.
- W3042933035 cites W2018709063 @default.
- W3042933035 cites W2035257365 @default.
- W3042933035 cites W2036901575 @default.
- W3042933035 cites W2042979304 @default.
- W3042933035 cites W2047951563 @default.
- W3042933035 cites W2084128334 @default.
- W3042933035 cites W2123360522 @default.
- W3042933035 cites W2124257654 @default.
- W3042933035 cites W2134809220 @default.
- W3042933035 cites W2144803285 @default.
- W3042933035 cites W2153965609 @default.
- W3042933035 cites W2156114286 @default.
- W3042933035 cites W2157408013 @default.
- W3042933035 cites W2169750224 @default.
- W3042933035 cites W2202170526 @default.
- W3042933035 cites W2256981962 @default.
- W3042933035 cites W2345173121 @default.
- W3042933035 cites W2404192493 @default.
- W3042933035 cites W2493190410 @default.
- W3042933035 cites W2544277621 @default.
- W3042933035 cites W2571219130 @default.
- W3042933035 cites W2587001086 @default.
- W3042933035 cites W2594660495 @default.
- W3042933035 cites W2600862990 @default.
- W3042933035 cites W2613041730 @default.
- W3042933035 cites W2883092763 @default.
- W3042933035 cites W2884739365 @default.
- W3042933035 cites W2910355434 @default.
- W3042933035 cites W2910669864 @default.
- W3042933035 cites W2916798096 @default.
- W3042933035 cites W2948606739 @default.
- W3042933035 cites W2949502942 @default.
- W3042933035 cites W2950062384 @default.
- W3042933035 cites W2952846208 @default.
- W3042933035 cites W2979524214 @default.
- W3042933035 cites W2983246216 @default.
- W3042933035 doi "https://doi.org/10.1109/tmi.2020.3009148" @default.
- W3042933035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32746145" @default.
- W3042933035 hasPublicationYear "2020" @default.
- W3042933035 type Work @default.
- W3042933035 sameAs 3042933035 @default.
- W3042933035 citedByCount "9" @default.
- W3042933035 countsByYear W30429330352021 @default.
- W3042933035 countsByYear W30429330352022 @default.
- W3042933035 countsByYear W30429330352023 @default.
- W3042933035 crossrefType "journal-article" @default.
- W3042933035 hasAuthorship W3042933035A5003217535 @default.
- W3042933035 hasAuthorship W3042933035A5008612863 @default.
- W3042933035 hasAuthorship W3042933035A5018606189 @default.
- W3042933035 hasAuthorship W3042933035A5029102289 @default.
- W3042933035 hasAuthorship W3042933035A5036359599 @default.
- W3042933035 hasAuthorship W3042933035A5037044309 @default.
- W3042933035 hasAuthorship W3042933035A5052610831 @default.
- W3042933035 hasAuthorship W3042933035A5068339381 @default.
- W3042933035 hasAuthorship W3042933035A5082727673 @default.
- W3042933035 hasAuthorship W3042933035A5091730842 @default.
- W3042933035 hasConcept C108583219 @default.
- W3042933035 hasConcept C111919701 @default.
- W3042933035 hasConcept C141379421 @default.
- W3042933035 hasConcept C144024400 @default.
- W3042933035 hasConcept C149923435 @default.
- W3042933035 hasConcept C153180895 @default.
- W3042933035 hasConcept C154945302 @default.
- W3042933035 hasConcept C199683683 @default.
- W3042933035 hasConcept C2524010 @default.
- W3042933035 hasConcept C2777210771 @default.
- W3042933035 hasConcept C2908647359 @default.
- W3042933035 hasConcept C31972630 @default.
- W3042933035 hasConcept C33923547 @default.
- W3042933035 hasConcept C41008148 @default.
- W3042933035 hasConcept C89600930 @default.
- W3042933035 hasConceptScore W3042933035C108583219 @default.
- W3042933035 hasConceptScore W3042933035C111919701 @default.