Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042948545> ?p ?o ?g. }
- W3042948545 endingPage "204" @default.
- W3042948545 startingPage "185" @default.
- W3042948545 abstract "One of the major challenges facing the realization of cognitive radios (CRs) in future mobile and wireless communications is the issue of high energy consumption. Since future network infrastructure will host real-time services requiring immediate satisfaction, the issue of high energy consumption will hinder the full realization of CRs. This means that to offer the required quality of service (QoS) in an energy-efficient manner, resource management strategies need to allow for effective trade-offs between QoS provisioning and energy saving. To address this issue, this paper focuses on single base station (BS) management, where resource consumption efficiency is obtained by solving a dynamic resource allocation (RA) problem using bipartite matching. A deep learning (DL) predictive control scheme is used to predict the traffic load for better energy saving using a stacked auto-encoder (SAE). Considered here was a base station (BS) processor with both processor sharing (PS) and first-come-first-served (FCFS) sharing disciplines under quite general assumptions about the arrival and service processes. The workload arrivals are defined by a Markovian arrival process while the service is general. The possible impatience of customers is taken into account in terms of the required delays. In this way, the BS processor is treated as a hybrid switching system that chooses a better packet scheduling scheme between mean slowdown (MS) FCFS and MS PS. The simulation results presented in this paper indicate that the proposed predictive control scheme achieves better energy saving as the traffic load increases, and that the processing of workload using MS PS achieves substantially superior energy saving compared to MS FCFS." @default.
- W3042948545 created "2020-07-23" @default.
- W3042948545 creator A5004802818 @default.
- W3042948545 creator A5081123538 @default.
- W3042948545 date "2020-06-01" @default.
- W3042948545 modified "2023-10-17" @default.
- W3042948545 title "QoS provisioning and energy saving scheme for distributed cognitive radio networks using deep learning" @default.
- W3042948545 cites W105261775 @default.
- W3042948545 cites W1586809334 @default.
- W3042948545 cites W1915580749 @default.
- W3042948545 cites W1969231017 @default.
- W3042948545 cites W1987618164 @default.
- W3042948545 cites W1994217184 @default.
- W3042948545 cites W2022729575 @default.
- W3042948545 cites W2026319543 @default.
- W3042948545 cites W2041109651 @default.
- W3042948545 cites W2060947387 @default.
- W3042948545 cites W2061840979 @default.
- W3042948545 cites W2073752401 @default.
- W3042948545 cites W2081178087 @default.
- W3042948545 cites W2087626529 @default.
- W3042948545 cites W2112170521 @default.
- W3042948545 cites W2135773367 @default.
- W3042948545 cites W2166659560 @default.
- W3042948545 cites W2167673020 @default.
- W3042948545 cites W2170376751 @default.
- W3042948545 cites W2285337995 @default.
- W3042948545 cites W2288211655 @default.
- W3042948545 cites W2294226829 @default.
- W3042948545 cites W2317641454 @default.
- W3042948545 cites W2495808595 @default.
- W3042948545 cites W2507038596 @default.
- W3042948545 cites W2549475464 @default.
- W3042948545 cites W2609883894 @default.
- W3042948545 cites W2616641544 @default.
- W3042948545 cites W2623190248 @default.
- W3042948545 cites W2626929583 @default.
- W3042948545 cites W2752166613 @default.
- W3042948545 cites W2754850686 @default.
- W3042948545 cites W2790759932 @default.
- W3042948545 cites W2890300808 @default.
- W3042948545 cites W2892466769 @default.
- W3042948545 cites W2896827527 @default.
- W3042948545 cites W2902441109 @default.
- W3042948545 cites W2905468526 @default.
- W3042948545 cites W2913181486 @default.
- W3042948545 cites W2953829179 @default.
- W3042948545 cites W2963063810 @default.
- W3042948545 cites W2963120385 @default.
- W3042948545 cites W2963439135 @default.
- W3042948545 cites W3103659406 @default.
- W3042948545 cites W2776134127 @default.
- W3042948545 doi "https://doi.org/10.1109/jcn.2020.000013" @default.
- W3042948545 hasPublicationYear "2020" @default.
- W3042948545 type Work @default.
- W3042948545 sameAs 3042948545 @default.
- W3042948545 citedByCount "10" @default.
- W3042948545 countsByYear W30429485452020 @default.
- W3042948545 countsByYear W30429485452021 @default.
- W3042948545 countsByYear W30429485452022 @default.
- W3042948545 countsByYear W30429485452023 @default.
- W3042948545 crossrefType "journal-article" @default.
- W3042948545 hasAuthorship W3042948545A5004802818 @default.
- W3042948545 hasAuthorship W3042948545A5081123538 @default.
- W3042948545 hasBestOaLocation W30429485451 @default.
- W3042948545 hasConcept C119599485 @default.
- W3042948545 hasConcept C120314980 @default.
- W3042948545 hasConcept C127413603 @default.
- W3042948545 hasConcept C162324750 @default.
- W3042948545 hasConcept C172191483 @default.
- W3042948545 hasConcept C18903297 @default.
- W3042948545 hasConcept C206729178 @default.
- W3042948545 hasConcept C21547014 @default.
- W3042948545 hasConcept C2742236 @default.
- W3042948545 hasConcept C2780165032 @default.
- W3042948545 hasConcept C29202148 @default.
- W3042948545 hasConcept C31258907 @default.
- W3042948545 hasConcept C41008148 @default.
- W3042948545 hasConcept C5119721 @default.
- W3042948545 hasConcept C68649174 @default.
- W3042948545 hasConcept C79403827 @default.
- W3042948545 hasConcept C86803240 @default.
- W3042948545 hasConceptScore W3042948545C119599485 @default.
- W3042948545 hasConceptScore W3042948545C120314980 @default.
- W3042948545 hasConceptScore W3042948545C127413603 @default.
- W3042948545 hasConceptScore W3042948545C162324750 @default.
- W3042948545 hasConceptScore W3042948545C172191483 @default.
- W3042948545 hasConceptScore W3042948545C18903297 @default.
- W3042948545 hasConceptScore W3042948545C206729178 @default.
- W3042948545 hasConceptScore W3042948545C21547014 @default.
- W3042948545 hasConceptScore W3042948545C2742236 @default.
- W3042948545 hasConceptScore W3042948545C2780165032 @default.
- W3042948545 hasConceptScore W3042948545C29202148 @default.
- W3042948545 hasConceptScore W3042948545C31258907 @default.
- W3042948545 hasConceptScore W3042948545C41008148 @default.
- W3042948545 hasConceptScore W3042948545C5119721 @default.
- W3042948545 hasConceptScore W3042948545C68649174 @default.
- W3042948545 hasConceptScore W3042948545C79403827 @default.