Matches in SemOpenAlex for { <https://semopenalex.org/work/W3042991172> ?p ?o ?g. }
- W3042991172 endingPage "136818" @default.
- W3042991172 startingPage "136808" @default.
- W3042991172 abstract "It is inevitable that defects happen to key components of the long-running high-speed trains. Thus as an effective inspection approach for defects, image detection becomes significantly important for operation and maintenance in the railway industry. However, a massive number of images collected by inspection devices challenge traditional methods based on manual effort. To address this issue, this paper proposed an automatic detection method, termed as multi-stage pipeline for defect detection (MPDD). MPDD includes two stages, component detection stage improves RPN anchor mechanism and way of feature fusion to promote detection performance, defect classification stage combines super-resolution strategy with CNN to improve defect classification performance. Experiments on high-speed train defect dataset shown that MPDD can reach the highest mAP of 0.792. The mAP on NEU surface defect database reached to 0.765 at the speed of 203ms per image." @default.
- W3042991172 created "2020-07-23" @default.
- W3042991172 creator A5036449183 @default.
- W3042991172 creator A5046370810 @default.
- W3042991172 creator A5069407513 @default.
- W3042991172 creator A5082661619 @default.
- W3042991172 creator A5085284295 @default.
- W3042991172 date "2020-01-01" @default.
- W3042991172 modified "2023-10-14" @default.
- W3042991172 title "Defect Detection Method for Electric Multiple Units Key Components Based on Deep Learning" @default.
- W3042991172 cites W1536680647 @default.
- W3042991172 cites W1987263271 @default.
- W3042991172 cites W2040483045 @default.
- W3042991172 cites W2044342579 @default.
- W3042991172 cites W2048281124 @default.
- W3042991172 cites W2071897443 @default.
- W3042991172 cites W2092072518 @default.
- W3042991172 cites W2097117768 @default.
- W3042991172 cites W2102605133 @default.
- W3042991172 cites W211198884 @default.
- W3042991172 cites W2121679663 @default.
- W3042991172 cites W2125629257 @default.
- W3042991172 cites W2149904433 @default.
- W3042991172 cites W2194775991 @default.
- W3042991172 cites W2406523001 @default.
- W3042991172 cites W2417716951 @default.
- W3042991172 cites W2555875178 @default.
- W3042991172 cites W2557728737 @default.
- W3042991172 cites W2589306531 @default.
- W3042991172 cites W2749684264 @default.
- W3042991172 cites W2764067741 @default.
- W3042991172 cites W2765854388 @default.
- W3042991172 cites W2788801286 @default.
- W3042991172 cites W2909698178 @default.
- W3042991172 cites W2953179883 @default.
- W3042991172 cites W2963037989 @default.
- W3042991172 cites W2963470893 @default.
- W3042991172 cites W2974032590 @default.
- W3042991172 cites W2990201419 @default.
- W3042991172 cites W2995024218 @default.
- W3042991172 cites W2999449553 @default.
- W3042991172 doi "https://doi.org/10.1109/access.2020.3009654" @default.
- W3042991172 hasPublicationYear "2020" @default.
- W3042991172 type Work @default.
- W3042991172 sameAs 3042991172 @default.
- W3042991172 citedByCount "12" @default.
- W3042991172 countsByYear W30429911722020 @default.
- W3042991172 countsByYear W30429911722021 @default.
- W3042991172 countsByYear W30429911722022 @default.
- W3042991172 countsByYear W30429911722023 @default.
- W3042991172 crossrefType "journal-article" @default.
- W3042991172 hasAuthorship W3042991172A5036449183 @default.
- W3042991172 hasAuthorship W3042991172A5046370810 @default.
- W3042991172 hasAuthorship W3042991172A5069407513 @default.
- W3042991172 hasAuthorship W3042991172A5082661619 @default.
- W3042991172 hasAuthorship W3042991172A5085284295 @default.
- W3042991172 hasBestOaLocation W30429911721 @default.
- W3042991172 hasConcept C121332964 @default.
- W3042991172 hasConcept C138885662 @default.
- W3042991172 hasConcept C152745839 @default.
- W3042991172 hasConcept C153180895 @default.
- W3042991172 hasConcept C154945302 @default.
- W3042991172 hasConcept C168167062 @default.
- W3042991172 hasConcept C172707124 @default.
- W3042991172 hasConcept C190839683 @default.
- W3042991172 hasConcept C199360897 @default.
- W3042991172 hasConcept C205649164 @default.
- W3042991172 hasConcept C26517878 @default.
- W3042991172 hasConcept C2776151529 @default.
- W3042991172 hasConcept C2776401178 @default.
- W3042991172 hasConcept C31972630 @default.
- W3042991172 hasConcept C38652104 @default.
- W3042991172 hasConcept C41008148 @default.
- W3042991172 hasConcept C41895202 @default.
- W3042991172 hasConcept C43521106 @default.
- W3042991172 hasConcept C52622490 @default.
- W3042991172 hasConcept C58640448 @default.
- W3042991172 hasConcept C79403827 @default.
- W3042991172 hasConcept C97355855 @default.
- W3042991172 hasConceptScore W3042991172C121332964 @default.
- W3042991172 hasConceptScore W3042991172C138885662 @default.
- W3042991172 hasConceptScore W3042991172C152745839 @default.
- W3042991172 hasConceptScore W3042991172C153180895 @default.
- W3042991172 hasConceptScore W3042991172C154945302 @default.
- W3042991172 hasConceptScore W3042991172C168167062 @default.
- W3042991172 hasConceptScore W3042991172C172707124 @default.
- W3042991172 hasConceptScore W3042991172C190839683 @default.
- W3042991172 hasConceptScore W3042991172C199360897 @default.
- W3042991172 hasConceptScore W3042991172C205649164 @default.
- W3042991172 hasConceptScore W3042991172C26517878 @default.
- W3042991172 hasConceptScore W3042991172C2776151529 @default.
- W3042991172 hasConceptScore W3042991172C2776401178 @default.
- W3042991172 hasConceptScore W3042991172C31972630 @default.
- W3042991172 hasConceptScore W3042991172C38652104 @default.
- W3042991172 hasConceptScore W3042991172C41008148 @default.
- W3042991172 hasConceptScore W3042991172C41895202 @default.
- W3042991172 hasConceptScore W3042991172C43521106 @default.
- W3042991172 hasConceptScore W3042991172C52622490 @default.